Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 7, стр. 990-1001

Клеточный состав эритроидных форм в крови и головной почке кефали-сингиля (Chelon auratus Risso, 1810) на протяжении годового цикла

А. А. Солдатов 1*, В. Н. Рычкова 1, Т. А. Кухарева 1, А. Г. Рокотова 1

1 Институт биологии южных морей им. А.О. Ковалевского РАН
Севастополь, Россия

* E-mail: alekssoldatov@yandex.ru

Поступила в редакцию 29.04.2023
После доработки 14.06.2023
Принята к публикации 16.06.2023

Аннотация

Исследовали изменение числа эритроцитов и содержание незрелых эритроидных форм в крови и гемопоэтической ткани кефали-сингиля (Chelon auratus Risso, 1810) на протяжении годового цикла. Отлов и доставку рыбы в аквариальную проводили ежемесячно. Определяли содержание эритробластов, базофильных и полихроматофильных нормобластов в головной почке (пронефрос) и циркулирующей крови. Установлено, что процессы эритропоэза в гемопоэтической ткани кефали-сингиля протекают нерегулярно. Активная продукция эритроидной массы приурочена в основном к постнерестовому периоду. Об этом свидетельствует увеличение содержания незрелых эритроидных форм в головной почке и крови. Это совпадает с общим увеличением числа клеток красной крови в системе циркуляции и свидетельствует о смещении эритроцитарного баланса в пользу продукционных процессов. В остальной период времени процессы противоположны. Допускается, что это связано с особенностями организации системы красной крови, которая исключает регулярную продукцию эритропоэтина в почках.

Ключевые слова: эритроциты, эритропоэз, головная почка, Chelon auratus Risso, 1810, годовой цикл

Список литературы

  1. Soldatov AA (2005) Peculiarities of organization and functioning of the fish red blood system (review). J Evol Biochem Physiol 41(3): 272–281. https://doi.org/10.1007/s10893-005-0060-0

  2. Chu CY, Cheng CH, Yang CH, Huang CJ (2008) Erythropoietins from teleosts. Cell Mol Life Sci 65: 3545–3552. https://doi.org/10.1007/s00018-008-8231-y

  3. Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool and Ecol 23(4): 275–281. https://doi.org/10.1080/21658005.2013.846963

  4. Chou C-F, Tohari S, Brenner S, Venkatesh B (2004) Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104: 1498–1503. https://doi.org/10.1182/blood-2003-10-3404

  5. Lai JCC, Kakuta I, Mok HOL, Rummer JL, Randall D (2006) Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. J Exp Biol 209: 2734–2738. https://doi.org/10.1242/jeb.02279

  6. Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, Barut B, Bahary N, Caro J, Handin R, Zon LI (2007) Functional conservation of erythropoietin signaling in zebrafish. Blood 110: 2718–2726. https://doi.org/10.1182/blood-2006-04-016535

  7. Kulkeaw K, Sugiyama D (2012) Zebrafish erythropoiesis and the utility of fish as models of anemia. Stem Cell Res Ther 3(6): 55–64. https://doi.org/10.1186/scrt146

  8. Gering M, Patient R (2005) Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell 8: 389–400. https://doi.org/10.1016/j.devcel.2005.01.010

  9. Jin H, Xu J, Wen Z (2007) Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 109: 5208–5214. https://doi.org/10.1182/blood-2007-01-069005

  10. Zhang Y, Jin H, Li L, Qin FX, Wen Z (2011) cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood 118: 4093–4101. https://doi.org/10.1182/blood-2011-03-342501

  11. Sales CF, Silva RF, Amaral MGC, Domingos FFT, Ribeiro AIMA, Thomé RG, Santos HB (2017) Comparative histology in the liver and spleen of three species of freshwater teleost. Neotrop Ichthyol 15(1): e160041. https://doi.org/10.1590/1982-0224-20160041

  12. Bhagat RP, Banerjee V (1986) Haematology of an Indian fresh water eel Amphipnous cuchia: erythrocyte count and related parameters with special reference to body length, sex and season. Comp Physiol Ecol 11(1): 21–27.

  13. Maslova MN, Soldatov AA, Tavrovskaya TV (1988) Seasonal dynamics in the state of the red blood system of several Black sea fish. J Evol Biochem Physiol 24(4): 398–402.

  14. Joshi PC (1989) Seasonal changes in the blood parameters of a hill-stream teleost, Channa gachua. Comp Physiol Ecol 14(2): 71–73.

  15. Al-Hassan LAJ, Al-Abood AY, Al-Seyab AA (1990) Seasonal variations in the haemoglobin concentration and haematocrit values of Silurus triostegus. Acta Ichthyol et Piscatoria 20(1): 99–103.

  16. Ezzat AA, Shabana MB, Farghaly AM (1974) Studies on the blood characteristics of Tilapia zilli. I. Blood cells. J Fish Biol 6(1): 1–12.

  17. Sharma T, Joshi BD (1985) Effect of seasonal variation on some haematologic values of hill stream fish Torputitora. J Adv Zool 6(1): 39–45.

  18. Lochmiller RL, Weichman JD, Zale AV (1989) Hematological assessment of temperature and oxygen stress in a reservoir population of striped bass. Comp Biochem Physiol 93A(3): 535–541. https://doi.org/ (89)90007-8https://doi.org/10.1016/0300-9629

  19. Mahoney JB, McNulty JK (1992) Disease-associated blood changes and normal seasonal hematological variation in winter flounder in the Hudson-Raritan Estuary. Trans Am Fish Soc 121(2): 261–268. https://doi.org/10.1577/1548-8659(1992)121<0261:NDBCAN>2.3.CO;2

  20. Soldatov AA, Kladchenko ES, Kukhareva TA, Andreyeva AYu (2020) Erythrocyte profile of circulating blood of Neogobius melanostomus (Pallas, 1814) under conditions of experimental hypothermia. J Ther Biol 2020 89: 102549. https://doi.org/10.1016/j.jtherbio.2020.102549

  21. Shulman GE, Love RM (1999) The Biochemical Ecology and Marine Fishes. Adv. Mar. Biol. 36. London. Acad Press. https://doi.org/10.1023/A:1012639928289

  22. Raizada MN, Singh CP (1981) Seasonal variations in the erythrocyte counts and haemoglobin content of Cirrhinus mrigala (Ham.). Proc Indian Nat Sci Acad 47(5): 656–658.

  23. Ochiai A, Ogawa M, Umeda S, Taniguchi N (1975) Change of blood properties of maturing japan eel at hormonal influences. Bull Jap Soc Sci Fish 41(6): 609–614.

  24. Hilge V, Klinger H (1978) Changes in the hemogram of the male European eel (Anguilla anguilla) during induced maturation. ICES CM.

  25. Andreyeva AY, Soldatov AA, Kukhareva TA (2017) Black scorpionfish (Scorpaena porcus) hemopoiesis: Analysis by flow cytometry and light microscopy. The Anatom Rec 300(11): 1993–1999. https://doi.org/10.1002/ar.23631

  26. Ranzani-Paiva MJT (1995) Hematological characteristics of the mullet, Mugil platanus G. from Cananeia lagoon-estuarine region. Bol Inst Pesca-Sao-Paulo 22(1): 1–22.

  27. Khrushchov NG, Lange MA, Zolotova TE, Bessonov AV (1993) Characteristics of erythroid sprout cells in mirror carp (perspectives of use in estimating the fish physiological-state). Izvest akad nauk ser biol (1): 83–87.

  28. Fischer U, Ototake M, Nakanishi T (1998) Life span of circulating blood cells in Ginbuna crucian carp (Carassius auratus langsdorfii). Fish Shellfish Immunol 8: 339–349. https://doi.org/10.1006/fsim.1998.0144

  29. Soldatov AA (2005) Physiological aspects of effects of urethane anesthesia on the organism of marine fishes. Hydrobiol J 41(1): 113–126.https://doi.org/10.1615/HydrobJ.v41.i1.130

  30. Houston AH (1990) Blood and circulation. In: Schreck CB, Moyles PH (ed) Methods for fish biology. Bethesda. Am Fish Soc. 273–322.

  31. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell. Oxford.https://doi.org/10.1002/jqs.1107

  32. Verde C, Giordano D, Russo R, Di Prisco G (2011) Blood. Erythropoiesis in Fishes. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Acad Press. 992–997.

  33. Mahabady MK, Morovvati H, Arefi A, Karamifar M (2012) Anatomical and Histomorphological Study of Spleen and Pancreas in Berzem (Barbus pectoralis). World J Fish and Marine Sci 4(3): 263–267. https://doi.org/10.5829/idosi.wjfms.2012.04.03.61283

  34. Borgioli G, Frangioni G (1997) Blood and splenic respiratory compensation in larval newts. Ital J Zool 64: 221–226. https://doi.org/10.1080/11250009709356200

  35. Galindez EJ, Aggio (1998) MC The spleen of Mustelus schmitti (Chondrichthyes, Triakidae): a light and electron microscopic study. Ichthyol Res 45: 179–186. https://doi.org/10.1007/BF02678560

  36. Kurtović B, Teskeredžić E, Teskeredžić Z (2008) Histological comparison of spleen and kidney tissue from farmed and wild European sea bass (Dicentrarchus labrax L.). Acta Adriat 49(2): 147–154.

  37. Muiswinkel WB, Lamers CHJ, Rombait JHWM (1991) Structural and functional aspects of the spleen in bony fish. Res Immunol 142: 962–966. https://doi.org/10.1016/0923-2494(91)90093-X

  38. Sundaresan M (2014) Ultrastructure of Spleen in the Freshwater Fish, Tilapia mossambica (Peters). Eur Acad Res 2(2): 2894–2908.

  39. Soldatov AA (1992) Развитие депо крови в онтогенезе морских рыб. Экология моря 42: 46–55. [Development of the blood depot stores in the ontogenesis of the marine fishes. Ekologiya morya 42: 46–55. (In Russ).

  40. Freire CA, Prodocimo V (2007) Special Challenges to Teleost Fish Osmoregulation in Invironmentally Extreme or Unstable Habitats. In: Baldisserotto B (ed) Fish Osmoregulation. Sci Publ. 249–276.

  41. Sudesh R, Sabhlok VP (2014) Effect of pinealectomy on plasma Na+, K+ and Ca2+ in catfish Clarias batrachus under different salinity levels. Ind J Fundament Appl Life Sci 4(2): 67–69.

  42. Jawad LA, Al–Mukhtar MA, Ahmed HK (2004) The relationship between haematocrit and some biological parameters of the Indian shad, Tenualosa ilisha (Family Clupeidae). Anim Biodiver and Conservat 27 (2): 47–52.

  43. Phillips MCL, Moyes CD, Tufts BL (2000) The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells. J Exp Biol 203(6): 1039–1045. https://doi.org/10.1242/jeb.203.6.1039

  44. Maestre R, Pazos M, Medina I (2009) Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins. J Agric Food Chem 57(15): 7013–7021. https://doi.org/10. 1021/jf9006664

  45. Blair B, Barlow C, Martin E, Schumaker R, McIntyre J (2020) Methemoglobin determination by multi-component analysis in coho salmon (Oncorhynchus kisutch) possessing unstable hemoglobin. Methods 7: 100836. https://doi.org/10.1016/j.mex.2020.100836

  46. Schoore EJ, Simco BA, Davis KB (1995) Responses of blue catfish and channel catfish to environmental nitrite. J Aquat Anim Health 7: 304–311.https://doi.org/10.1577/15488667(1995)007<0304:ROBCAC>2.3.CO;2

  47. Saleh MC, McConkey S (2012) NADH-dependent cytochrome b5 reductase and NADPH methemoglobin reductase activity in the erythrocytes of Oncorhynchus mykiss. Fish Physiol Biochem 38: 1807–1813. https://doi.org/10.1007/s10695-012-9677-2

  48. Krishna MS, Venkataramana G (2007) Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with pregnancy-induced hypertension. Ind J Physiol Pharmacol 51: 284–288.

  49. Graham MS, Fletcher GL (1986) High concentrations of methemoglobin in five species of temperate marine teleosts. J Exp Zool 239: 139–142. https://doi.org/10.1002/jez.1402390117

  50. Houston AH, Roberts WC, Kennington JA (1996) Hematological response in fish: pronephric and splenic involvements in the goldfish. Fish Physiol Biochem 15(6): 481–489. https://doi.org/10.1007/BF01874922

  51. Rothmann C, Levinshal T, Timan B, Avtalion RR, Malik Z (2000) Spectral imaging of red blood cells in experimental anemia of Cyprinus carpio. Comp Biochem Physiol 125: 75–83. https://doi.org/10.1016/s1095-6433(99)00157-9

  52. Wickramasinghe SN (1993) Erythropoietin and the human kidney: evidence for an evolutionary link from studies of Salmo gairdneri. Comp Biochem Physiol 104A: 63–65. https://doi.org/10.1016/0300-9629(93).90009-s

  53. Moritz KM, Lim GB, Wintour EM (1997) Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol 273: R1829–R1844.https://doi.org/10.1152/ajpregu.1997.273.6.R1829

  54. Pottinger TG, Pickering AD (1987) Androgen levels and erythrocytosis in maturing brown trout, Salmo trutta L. Fish Physiol Biochem 3(3): 121–126. https://doi.org/10.1007/BF02180413

Дополнительные материалы отсутствуют.