Сенсорные системы, 2021, T. 35, № 2, стр. 91-102

Нейрофизиологическое обеспечение моторного контроля в “гибридных” позах. Обзор литературы

Н. Д. Бабанов 1*, Е. А. Бирюкова 2

1 ФГБНУ “НИИ нормальной физиологии им. П.К. Анохина”
125315 Москва, ул. Балтийская, д. 8, Россия

2 ФГАОУ ВО “КФУ им. В.И. Вернадского”
295007 Симферополь, Проспект Академика Вернадского, 4, Россия

* E-mail: n.babanov@nphys.ru

Поступила в редакцию 01.12.2020
После доработки 11.01.2021
Принята к публикации 19.01.2021

Аннотация

Статья посвящена анализу современного состояния исследований в области аспектов нейрофизиологического контроля параметров нетипичных поз у человека, связанных с использованием внешних устройств по типу экзоскелет. Основными результатами исследований последних 5 лет является формирование научных представлений о нейрофизиологических перестройках системы моторного контроля при применении роботизированных устройств. Полученные сведения могут быть использованы в физиологии спорта, двигательной реабилитации пациентов, при разработке экзоскелетов верхних и нижних конечностей, организации работы операторов, обучении специфическим движениям.

Ключевые слова: функциональное состояние, синергия мышц, мышцы, экзоскелет, роботехнические системы, моторное обучение, функциональное состояние

DOI: 10.31857/S0235009221020025

Список литературы

  1. Агаджанян Н.А., Власова И.Г., Ермакова Н.В., Торшин В.И. Основы физиологии человека. Под ред. В.И. Торшина. Москва. Российский университет дружбы народов. 2017. Т. 2. С. 262.

  2. Бабанов Н.Д., Кубряк О.В. Физиологические методики в изучении “пассивных” промышленных экзоскелетов спины и нижних конечностей. Мед. труда и пром. экол. 2020. Т. 60. № 5. С. 318–328. https://doi.org/10.31089/1026-9428-2020-60-5-318-328

  3. Бабанов Н.Д., Кобрин А.И. Применение стабилографии для исследования влияния ограничения подвижности суставов человека в задаче сохранения вертикальной позы. Инфорино-2018. 2018. С. 371–375.

  4. Кобелев А.В., Смолюк Л.Т., Кобелева Р.М., Проценко Ю.Л. Нелинейные вязкоупругие свойства биологических тканей. Екатеринбург. УрО РАН. 2012. Т. 244. 204 с.

  5. Кондур А.А. Эффективность использования нейроинтерфейса в восстановлении двигательной функции руки после инсульта. Дис. на соискание уч. ст. канд. мед. наук: спец. 14.01.11 “Нервные болезни”. М.: 2017. 42 с.

  6. Письменная Е.В., Петрушанская К.А., Котов С.В. и др. Клинико-биомеханическое обоснование применения экзоскелета “Экзоатлет” при ходьбе больных с последствиями ишемического инсульта. Russian Journal of Biomechanics. 2019. Т. 23. № 2. С. 204.

  7. Чуян Е.Н., Бирюкова Е.А., Бабанов Н.Д. Двигательная реабилитация пациентов с нарушениями моторики верхних конечностей: анализ современного состояния исследований (обзор литературы). Уч. зап. Крымского фед. ун-та им. В.И. Вернадского. Биология. Химия. 2019. Т. 5 (71). № 1. С. 163–178.

  8. Фролов А.А., Александров А.В. “Концепция” Естественных синергий” как развитие представлений на Бернштейна о двигательных синергиях. Идеи НА Бернштейна в наши дни. 2019. С. 126–147.

  9. Хайбуллин Т.И., Гранатов Е.В., Шакирзянова С.Р. “Коротколатентные и длиннолатентные рефлексы: механизм генерации, их интерпретация и клиническая применимость” Практическая медицина. 2017. Т. 1. № 1 (102). С. 52–59.

  10. Afschrift M., Jonkers I., De Schutter J., De Groote F. Mechanical effort predicts the selection of ankle over hip strategies in nonstepping postural responses. J. Neurophysiology. 2016. V. 116 (4). P. 1937–1945.https://doi.org/10.1152/jn.00127.2016

  11. Armstrong D.M. The supraspinal control of mammalian locomotion. J. Physiol. 1988. V. 405. P. 1–37.

  12. Boudreau S.A., Farina D., Falla D. The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. Man Ther. 2010. V. 15 (5). P. 410–414.https://doi.org/10.1016/j.math.2010.05.00820615749

  13. Buch E., Weber C., Cohen L.G., Braun C., Dimyan M.A., Ard T., Mellinger J., Caria A., Soekadar S.R., Fourkas A., Birbaumer N. Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic. Stroke. 2008. V. 39 P. 910–917.

  14. Calabrò R.S., Naro A., Russo M. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J. Neuro Engin. Rehabil. 2018. V. 15 (1). P. 35–40. https://doi.org/10.1186/s12984-018-0377-8

  15. Casas J., Senft E., Gutiérrez L.F., Rincón-Rocancio M., Múnera M., Belpaeme T., Cifuentes C.A. Social Assistive Robots: Assessing the Impact of a Training Assistant Robot in Cardiac Rehabilitation. Intern. J. Soc. Robotics. 2020. P. 1–15.

  16. Collins S.H., Wiggin M.B., Sawicki G.S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015. V. 522 (7555). P. 212–215. https://doi.org/10.1038/nature14288

  17. Day J.J., Cheng R., Rogers J., Litinas K., Hrovat K., Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Therapy. 2014. V. 33. P. 203–211.

  18. Farkhatdinov I., Ebert J., van Oort G., Vlutters M., van Asseldonk E. Assisting human balance in standing with a robotic exoskeleton. IEEE Robotics and Automation Letters. 2019. V. 4 (2). P. 414–421. https://doi.org/10.1109/lra.2018.2890671

  19. Fasola J., Vouga T., Baud R., Bleuler H., Bouri M. Balance Control Strategies during Standing in a Locked-Ankle Passive Exoskeleton. IEEE 16th Intern. Conf. Rehabilitat. Robotics (ICORR). 2019. https://doi.org/10.1109/icorr.2019.8779500

  20. Ganesh G., Haruno M., Kawato M., Burdet E. Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J Neurophysiol. 2010 V. 104 (1). P. 382–390.

  21. Gao Y., Cronin N.J., Pesola A.J., Finni T. Muscle activity patterns and spinal shrinkage in office workers using a sit–stand workstation versus a sit workstation. Ergonomics. 2016. V. 59 (10). P. 1267–1274. https://doi.org/10.1080/00140139.2016.1139750

  22. Gottlieb G.L., Corcos D.M., Agarwal G.C. Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav Brain Sci. 1989. V. 12 (2). P. 189–250. https://doi.org/10.1017/S0140525X00048238

  23. Hassan M., Kadone H., Ueno T., Hada Y., Sankai Y., Suzuki K. Feasibility of synergy-based exoskeleton robot control in hemiplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018. V. 26 (6). P. 1233–1242. https://doi.org/10.1109/TNSRE.2018.2832657

  24. Howard J., Murashov V.V., Lowe B.D., Lu M.L. Industrial exoskeletons: Need for intervention effectiveness research. Am. J. Ind. Med. 2020. V. 63 (3). P. 201–208. https://doi.org/10.1002/ajim.23080

  25. Hulliger M., Dürmüller N., Prochazka A., Trend P. Flexible fusimotor control of muscle spindle feedback during a variety of natural movements. Prog Brain Res. 1989. V. 80. P. 87–101.

  26. Inoue T., Kato Y., Ozawa J. Prediction sit-to-stand movement using trunk angle and lower limb EMG for assist system. IEEE Intern. Conf. Consumer Electron. (ICCE). 2017. P. 143–144.

  27. Jackson R.W., Dembia C.L., Delp S.L., Collins S.H. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking. J. Exp. Biol. 2017. V. 220 (11). P. 2082–2095. https://doi.org/10.1242/jeb.150011

  28. Kaoru T. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017. V. 10 (1). P. 1–17. https://doi.org/10.14802/jmd.16062

  29. Kim H., Park G., Shin J.H. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial. Sci. Rep. 2020. V. 10 (1). P. 1–9. https://doi.org/10.1038/s41598-020-69367-3

  30. Knaepen K., Mierau A., Swinnen E. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? PLoS One. 2015. V. 10. e0140626. https://doi.org/10.1371/journal.pone.0140626

  31. Koyama S., Tanabe S., Otaka Y., Kato T., Furuzawa S., Tatemoto T., Saitoh E. Novel lateral transfer assist robot decreases the difficulty of transfer in post-stroke hemiparesis patients: a pilot study. Disability and Rehabilitation: Assistive Technology. 2020. P. 1–5.

  32. Lanza M.B., Balshaw T.G., Folland J.P. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? Exper. Physiol. 2017. V. 102 (8). P. 962–973. https://doi.org/10.1113/ep086343

  33. Latash M.L. Muscle coactivation: definitions, mechanisms, and functions. J. Neurophysiol. 2018. V. 120 (1). P. 88–104. https://doi.org/10.1152/jn.00084.2018

  34. Li J., Thakor N., Bezerianos A. Unilateral Exoskeleton Imposes Significantly Different Hemispherical Effect in Parietooccipital Region, but Not in Other Regions. Sci. Rep .2018. V. 8 (1). P. 1–10. https://doi.org/10.1038/s41598-018-31828-1

  35. Li Z., Liu H., Yin Z., Chen K. Muscle Synergy Alteration of Human During Walking With Lower Limb Exoskeleton. Front Neurosci. 2019. V. 12. P. 1050. https://doi.org/10.3389/fnins.2018.0105030760972

  36. Luger T., Seibt R., Cobb T.J., Rieger M.A., Steinhilber B. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Applied Ergonomics. 2019. V. 80. P. 152–160.

  37. Madinei S., Alemi M.M., Kim S., Srinivasan D., Nussbaum M.A. Biomechanical Evaluation of Passive Back-Support Exoskeletons in a Precision Manual Assembly Task: “Expected” Effects on Trunk Muscle Activity, Perceived Exertion, and Task Performance. Hum Factors. 2020. V. 62 (3). P. 441–457. https://doi.org/10.1177/0018720819890966

  38. Martinez A., Lawson B., Goldfarb M. A controller for guiding leg movement during overground walking with a lower limb exoskeleton IEEE Transactions on Robotics. 2017. V. 34 (1). P. 183–193.

  39. Morasso P.G., Sanguineti V. Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J. Neurophysiol. 2002. V. 88 (4). P. 2157–2162.

  40. Mori S., Matsuyama K., Mori F., Nakajima K. Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv. Neurol. 2001. V. 87. P. 25–40.

  41. Nakanishi Y., Wada F., Saeki S., Hachisuka K. Rapid changes in arousal states of healthy volunteers during robot-assisted gait training: a quantitative time-series electroencephalography study. J. Neuroeng. Rehabil. 2014. V. 11 (1). P. 1–9. https://doi.org/10.1186/1743-0003-11-59

  42. Noguchi M., Glinka M., Mayberry G.R. et al. Are hybrid sit-stand postures a good compromise between sitting and standing? Ergonomics. 2019. V. 62(6). P. 811–822. https://doi.org/10.1080/00140139.2019.1577496

  43. Nuckols R.W., Sawicki G.S. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. J. Neuroeng. Rehabil. 2020a.https://doi.org/10.21203/rs.2.20510/v1

  44. Nuckols R.W., Dick T.J.M., Beck O.N., Sawicki G.S. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Sci Rep. 2020b. V. 10 (1). P. 1–15. https://doi.org/10.1038/s41598-020-60360-4

  45. Nuckols R.W., Takahashi K.Z., Farris D.J., Mizrachi S., Riemer R., Sawicki G.S. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons. PLoS One. 2020c. V. 15 (8):e0231996. https://doi.org/10.1371/journal.pone.0231996

  46. Peterka R. J. Sensory integration for human balance control. Handbook of clinical neurology. Elsevier. 2018. V. 159 P. 27–42.

  47. Pirondini E., Coscia M., Marcheschi S. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J. Neuroeng. Rehabil. 2016. V. 13 (1). P. 9–15. https://doi.org/10.1186/s12984-016-0117-x

  48. Prasard G., Herman P., Coyle D., McDonough S., Crosbie J. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuro.Engineer. Rehabilitat. 2010. V. 7 (1). P. 60–68.

  49. Proietti T., Guigon E., Roby-Brami A., Jarrassé N. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. J. Neuroeng. Rehabil. 2017. V. 14 (1). P. 55–60. https://doi.org/10.1186/s12984-017-0254-x

  50. Robertson B.D., Vadakkeveedu S., Sawicki G.S. A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with parallel mechanical assistance from an elastic exoskeleton. J. Biomech. 2017. V. 57. P. 8–17. https://doi.org/10.1016/j.jbiomech.2017.03.009

  51. Rong W., Li W., Pang M., Hu J., Wei X., Yang B., Wai H., Zheng X., Hu X. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. J. Neuroeng Rehabil. 2017. V. 14 (1). P. 34–40. https://doi.org/10.1186/s12984-017-0245-y

  52. Rowley K.M., Engel T., Kulig K. Trunk and hip muscle activity during the Balance-Dexterity task in persons with and without recurrent low back pain. J. Electromyography and Kinesiology. 2020. V. 50 P. 102378.

  53. Saleh S., Fluet G., Qiu Q., Merians A., Adamovich S.V., Tunik E. Neural patterns of reorganization after intensive robot-assisted virtual reality therapy and repetitive task practice in patients with chronic stroke. Front. Neurol. 2017. V. 8. P. 452–458. https://doi.org/10.3389/fneur.2017.00452

  54. Schmalz T., Schändlinger J., Schuler M. et al. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. Int. J. Environ. Res. Public Health. 2019. V. 16 (23). P. 4792.

  55. Shik M.L., Orlovsky G.N. Neurophysiology of locomotor automatism. Physiol. 1976. V. 56 (3). P. 465–501.

  56. Shindo K. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J. Rehabilitat. Medicine. 2011. V. 43 (10). P. 951–957.

  57. Stetter B.J., Ringhof S., Krafft F.C. Sell S. Stein T. Estimation of knee joint forces in sport movements using wearable sensors and machine learning. Sensors. 2019. V. 19 (17). P. 3690.

  58. Surgent O.J., Dadalko O.I., Pickett K.A., Travers B.G. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019. V. 71. P. 245–252. https://doi.org/10.1016/j.gaitpost.2019.05.011

  59. Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017. V. 10 (1). P. 1–17. https://doi.org/10.14802/jmd.16062

  60. Takakusaki K., Chiba R., Nozu T., Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J. Neural.Ttransmis. 2016. V. 123 (7). P. 695–729.

  61. Theurel J., Desbrosses K., Roux T., Savescu A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics. 2018. V. 67. P. 211–217. https://doi.org/10.1016/j.apergo.2017.10.008

  62. Thibault R.T., Raz A. Imaging Posture Veils Neural Signals. Front Hum Neurosci. 2016. V. 10. P. 520–525. https://doi.org/10.3389/fnhum.2016.00520

  63. Tucker M.R., Olivier J., Pagel A., Bleuler H., Bouri M., Lambercy O., Gassert R. Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroengineer. Rehabilitat. 2015. V. 12 (1). P. 1–10.

  64. Veneman J.F., Seyfarth A., Barralon P. Evaluating postural balance erformance in exoskeleton robots. 2013.

  65. Yang N., Zhang M., Huang C., Jin D. Synergic analysis of upper limb target-reaching movements. J. Biomech. 2002. V. 35 (6). P. 739–746.

  66. Zonnino A., Farrens A.J., Ress D., Sergi F. StretchfMRI: a new technique to quantify the contribution of the reticular formation to long-latency responses via fMRI. IEEE. 2019. P. 1247–1253. https://doi.org/10.1101/582692

  67. Wang W., Li R., Diekel Z., Chen Y., Zhang Z., Jia Y. Controlling object hand-over in human–robot collaboration via natural wearable sensing. IEEE Transactions on Human-Machine Systems. 2018. V. 49 (1). P. 59–71.

Дополнительные материалы отсутствуют.