Сенсорные системы, 2021, T. 35, № 2, стр. 103-134

Функциональное исследование первичной слуховой коры кошки

Н. Г. Бибиков 12*

1 АО Акустический институт им. акад. Н.Н. Андреева
117036 Москва, ул. Шверника, 4, Россия

2 Институт проблем передачи информации им. А.А. Харкевича РАН
127051 Москва, Большой Каретный пер., 19, Россия

* E-mail: nbibikov1@yandex.ru

Поступила в редакцию 05.11.2020
После доработки 15.12.2020
Принята к публикации 12.01.2021

Аннотация

Анализируются результаты электрофизиологических исследований реакций на звуковые стимулы нейронов первичной слуховой коры кошки. В течение более чем полувека эта зона являлась излюбленным объектом исследования и морфологов, и специалистов в области сенсорной физиологии. Некоторые ранние электрофизиологические работы выявили высокую специфичность реакции клеток интактного объекта. Однако в дальнейших работах, выполняемых, как правило, на наркотизированных животных, основное внимание уделялось анализу тонотопической организации коры и возможному выявлению иных особенностей реакции клеток, определяемых топографией этой корковой зоны. При этом ответ нейронов первичной коры на звук, как правило, возникал только в момент начала сигнала и отличался весьма слабой способностью к воспроизведению быстрых временных изменений. Сопоставление данных, полученных в разных лабораториях, выявляет существенную роль общего состояния объекта во время регистрации импульсной активности нейронов коры. В последние годы, когда получены важные результаты на нейронах слуховой коры бодрствующих грызунов и приматов, выявился явный дефицит таких данных именно для столь, казалось бы, изученного объекта, как первичная зона коры кошки.

Ключевые слова: первичная слуховая кора, кошка, кодирование признаков, наркоз, коммуникационные сигналы

DOI: 10.31857/S0235009221020037

Список литературы

  1. Альтман Я.А. Ответы нейронов слуховой коры кошки на звуковые сигналы с интерауральными различиями. Физиол. журн. СССР им. Сеченова. 1972. Т. 58 (1). С. 9–16.

  2. Альтман Я.А., Никитин Н.И. Тормозные процессы в реакциях нейронов слуховой коры кошки при дихотической стимуляции. Ж. эволюц. биохим. и физиол. 1985. Т. 21. С. 463–469.

  3. Бахтин Г.A., Бибиков Н.Г. Изменение чувствительности к прерыванию акустического сигнала в процессе адаптации слуховой системы лягушки. Акустический журн. 1974. Т. 19 (4). С. 614–616.

  4. Бибиков Н.Г. Кросс-корреляционный анализ активности слуховых нейронов при действии звуковых щелчков. Биофизика. 1981. Т. 26 (2). С. 339–345.

  5. Бибиков Н.Г., Самсон Ф., Имиг. Т. Функции риска и функции ожидаемой плотности импульсации нейронов кохлеарного ядра кошки. Росс. физиол. журн. им. И.М. Сеченова. 2003. Т. 89 (6). С. 682–699.

  6. Бибиков Н.Г. Относительная роль амплитуды сигнала и скорости ее изменения для генерации импульсной активности в нейронах продолговатого мозга амфибий. Ж. эволюц. биохим. и физиол. 2020. Т. 56 (1). С. 62–72.

  7. Волков И.О., Дембновецкий О.Ф. Рецептивные поля нейронов слуховой коры кошки. Нейрофизиология. 1982. Т. 13 (5). С. 328–333.

  8. Волков И.О., Галазюк А.В. Ответы нейронов слуховой коры неанестезированной кошки на тоны характеристической частоты. Нейрофизиология. 1985. Т. 17 (4). С. 500–508.

  9. Никитин Н.И., Варфоломеев А.Л., Котеленко Л.М. Реакция нейронов первичной слуховой коры на движущийся стимул с динамически изменяющейся межушной задержкой. Физиол. журн. им. И.М. Сеченова. 2003. Т. 89. С. 625–638.

  10. Серков Ф.Н. Нейронные и синаптические механизмы коркового торможения. Нейрофизиология. 1985. Т. 16 (3). С. 313–319.

  11. Серков Ф.Н. Сторожук В.М. Ответы нейронов слуховой коры на звуковые сигналы. Нейрофизиология. 1969. Т. 1 (2). С. 113–120.

  12. Серков Ф.Н., Яновский Е.Ш. Постсинаптические потенциалы нейронов слуховой коры кошки. Нейрофизиология. 1971. Т. 3. С. 339–349.

  13. Серков Ф.Н., Яновский Е.Ш., Тальнов А.Н. Влияние пентобарбитала, хлоралозы и уретана на тормозные постсинаптические потенциалы корковых нейронов. Нейрофизиология. 1974. Т. 5 (4). С. 339–346.

  14. Силькис И.Г., Рапопорт С.Ш. Пластические перестройки рецептивных полей нейронов слуховой коры и медиального коленчатого тела. Журн. высш. нервн. деят. им. И.П. Павлова. 1994. Т. 44 (3). С. 548–568.

  15. Abeles M., Goldstein M.H. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 1970. V. 33. P. 172–187.

  16. Aertsen A.M.H.J., Johannesma P.I.M. Spectro-temporal receptive fields of auditory neurons in the grassfrog. Biological Cybernetics. 1980. V. 38 (4). P. 223–234. https://doi.org/10.1007/bf00337015

  17. Atencio C.A., Schreiner C.E. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. J. Neurosci. 2008. V. 28. P. 3897–3910.

  18. Atencio C.A., Schreiner C.E. Laminar diversity of dynamic sound processing in cat primary auditory cortex. J. Neurophysiol. 2010a. V. 103. P. 192–205.

  19. Atencio C.A., Schreiner C.E. Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS One. 2010b. V. 5: e9521. https://doi.org/10.1371/journal.pone.0009521

  20. Atencio C.A., Schreiner C.E. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex. PLoS One. 2012. V. 7 (2). e31537. https://doi.org/10.1371/journal.pone.0031537

  21. Atencio C.A., Schreiner C.E. Functional congruity in local auditory cortical microcircuits. Neurosci. 2016. V. 316. P. 402–419. https://doi.org/10.1016/j.neuroscience.2015.12.057

  22. Atencio C.A., Sharpee T.O., Schreiner C.E. Hierarchical computation in the canonical auditory cortical circuit. Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 21894–2189.

  23. Atencio C.A., Sharpee T.O. Multidimensional receptive field processing by cat primary auditory cortical neurons. Neurosci. 2017. V. 359. P. 130–141. https://doi.org/10.1016/j.neuroscience.2017.07.003

  24. Bar-Yosef O., Rotman Y., Nelken I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral contex. J. Neurosci. 2002. V. 22 (19). P. 8619–8632.

  25. Bonham B.H., Cheung S.W., Godey B., Schreiner C.E. Spatial organization of frequency response areas and rate/level functions in the developing AI. J. Neurophysiol. 2004. V. 91 (2). P. 841–854. https://doi.org/10.1152/jn.00017.2003

  26. Britvina T., Eggermont J.J. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex. Neurosci. 2008. V. 154 (4). P. 1576–1588.

  27. Brosch M., Schreiner C.E. Time course of masking curves in cat primary auditory cortex. J. Neurophysiol. 1997. V. 77. P. 923–943.

  28. Brosch M., Schreiner C. E. Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex. 2000. V. 10 (12). P. 1155–1167. https://doi.org/10.1093/cercor/10.12.1155

  29. Brugge J.F., Dubrovsky N.A., Aitkin L.M., Anderson D.J. Sensitivity of single neurons in the auditory cortex of cat to binaural stimulation: effects of varying interaural time and intensity. J. Neurophysiol. 1969. V. 32. P. 1005–1024.

  30. Brugge J.F., Reale R.A., Hind J.E., Chan J.C., Musicant A.D., Poon P.W. Simulation of free-field sound sources and its application to studies ofcortical mechanisms of sound localization in the cat. Hear. Res. 1994. V. 73. P. 67–84.

  31. Brugge J.F., Reale R.A., Hind J.E. The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. J. Neurosci. 1996. V. 16 (14). P. 4420–4437.

  32. Butler B.E., Hall A.J., Lomber S.G. High-field functional imaging of pitch processing in auditory cortex of the cat. PLoS One. 2015. V. 10 (7). e0134362. https://doi.org/10.1371/journal.pone.0134362

  33. Calford M.B., Semple M.N. Monaural inhibition in cat auditory cortex. J Neurophysiol. 1995. V. 73. P. 1876–1891.

  34. Carrasco A., Lomber S.G. Neuronal activation times to simple, complex, and natural sounds in cat primary and non-primary auditory cortex. J. Neurophysiol. 2011. V. 106. P. 1166–1178.

  35. Cheung S.W., Nagarajan S.S., Bedenbaugh P.H., Schreiner C.E., Wang X., Wong A. Auditory cortical neuron differences under isoflurane versus pentobarbital anesthesia. Hear. Res. 2001. V. 156. P. 115–127.

  36. Chimoto S., Kitama T., Qin L., Sakayori S., Sato Y. Tonal response patterns of primary auditory cortex neurons in alert cats. Brain Res. 2002. V. 934 (1). P. 34–42. https://doi.org/10.1016/s0006-8993(02)02316

  37. De Boer E. On cochlear encoding: Potentialities and limitations of the reverse-correlation technique. J. Acoust. Soc. Amer. 1978. V. 63 (1) P. 115–135. https://doi.org/10.1121/1.381704

  38. Dinse H.R., Godde B., Hilger T., Reuter G., Cords S.M., Lenarz T., Von Seelen W. Optical imaging of cat auditory cortex cochleotopicselectivity evoked by acute electrical stimulation of a multi-channel cochlear implant. Eur. J. Neurosci. 1997. V. 9. P. 113–119.

  39. Dong C., Qin L., Liu Y., Zhang X., Sato Y. Neuralresponses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains. PLoS One. 2011. V. 6v(10). e25895. https://doi.org/10.1371/journal.pone.0025895

  40. Eggermont J.J. Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hear. Res. 1991. V. 56. P. 153–167.

  41. Eggermont J.J. Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hear. Res. 1992. V. 61 (1–2). P. 1–11. https://doi.org/10.1016/0378-5955(92)90029

  42. Eggermont J.J. Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear. Res. 1994. V. 74 (1–2). P. 51–66. https://doi.org/10.1016/0378-5955(94)90175-9

  43. Eggermont J.J. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 1998. V. 80 (5). P. 2743–2764. https://doi.org/10.1152/jn.1998.80.5.2743

  44. Eggermont J.J. Neural correlates of gap detection in three auditory cortical fields in the cat. J. Neurophysiol. 1999. V. 81. P. 2570–2581.

  45. Eggermont J.J. Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detectionthresholds. J. Neurophysiol. 2000. V. 84. P. 1453–1463.

  46. Eggermont J.J. Temporal modulation transfer functions in cat primary auditorycortex: separating stimulus effects from neural mechanisms. J. Neurophysiol. 2002. V. 87. P. 305–321.

  47. Eggermont J.J. Context dependence of spectro-temporal receptive fields with implications for neural coding. Hear. Res. 2011. V. 271. P. 123–132.

  48. Eggermont J.J., Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear. Res. 2000. V. 142. P. 89–101.

  49. Eisenman L. Neural encoding of sound location: an electrophysiological study in auditory cortex (AI) of the cat using free field stimuli. Brain Res. 1974. V. 75. P. 203–214.

  50. Evans E., Whitfield I. Classification of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat. J. Physiol. 1964. V. 171. P. 476–793.

  51. Fallon J.B., Shepherd R.K., Irvine D.R.F. Effects of chronic cochlear electrical timulation after an extended period of profound deafness on primary auditory cortex organization in cats. Europ. J. Neurosci. 2013. V. 39 (5). P. 811–820. https://doi.org/10.1111/ejn.12445

  52. Fallon J.B., Shepherd R.K., Nayagam D.A.X., Wise A.K., Heffer L.F., Landry T.G., Irvine D.R.F. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hear. Res. 2014. V. 315. P. 1–9. https://doi.org/10.1016/j.heares.2014.06.001

  53. Fishbach A., Nelken I., YeshurunY. Auditoryedge detection: a neural model for physiological and psychoacousticalresponses to amplitude transients. J. Neurophysiol. 2001. V. 85. P. 2303–2323.

  54. Gerstein G.L., Kiang N.Y. Responses of single units in the auditory cortex. Experimental Neurology. 1964. V. 10 (1). P. 1–18. https://doi.org/10.1016/0014-4886(64)90083-4

  55. Goldstein M.H., Hall II J.L., Butterfield B.O. Single unit activity in the primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Amer. 1968. V. 43. P. 444–455.

  56. Gehr D.D., Komiya H., Eggermont J.J. Neuronal responses in cat primaryauditory cortex to natural and altered species-specific calls. Hear. Res. 2000. V. 150. P. 27–42.

  57. Gourevitch B., Eggermont J.J. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J. Neurophysiol. 2007. V. 97. P. 144–158.

  58. Gourévitch B., Eggermont J.J. Spectrotemporal sound density dependent long-term adaptation in cat primary auditory cortex. Eur. J. Neurosci. 2008. V. 27. P. 3310–3321.

  59. Gourévitch B., Noreña A., Shaw G., Eggermont J.J. Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cerebral Cortex. 2009. V. 19 (6). P. 1448–1461. https://doi.org/10.1093/cercor/bhn184

  60. Hall J.L., Goldstein M.H. Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Amer. 1968. V. 43 (3). P. 456–461. https://doi.org/10.1121/1

  61. Hall A.J., Lomber S.G. High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat. Hear. Res. 2015. V. 325. P. 1–11.

  62. Harper N.S., Schoppe O., Willmore B.D., Cui Z., Schnupp J.W., King A.J. Networkreceptive field modeling reveals extensive integration and multi-feature selectivity in auditory cortical neurons. PLoS Comput. Biol. 2016. V. 12. e1005113.

  63. He J., Hashikawa T., Ojima H., Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 1997. V. 17 (7). P. 2615–2625.

  64. Heil P. Auditory cortical onset responses revisited. I. First-spiketiming. J. Neurophysiol. 1997. V. 77. P. 2616–2641.

  65. Heil P., Rajan R., Irvine D.R. Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear. Res. 1994. V. 76. P. 188–202.

  66. Hind J.E. An electrophysiological determination oftonotopic organization in auditory cortex of cat. J. Neurophysiol. 1953. V. 16. P. 473–489.

  67. Hubel D.H., Henson C.O., Rupert A., Galambos R. Attention units in the auditory cortex. Science. 1959. V. 129. P. 1279–1280.

  68. Imaizumi K., Priebe N.J., Sharpee T.O., Cheung S.W., Schreiner C.E. Encoding of temporal information by timing, rate, and place in cat auditory cortex; PLoS One. 2010. V. 5. (e11531).

  69. Jenkins W.M., Merzenich M.M. Role of cat primary auditory cortex for sound-localization behavior. J. Neurophysiol. 1984. V. 52 (5). P. 819–847.

  70. Imig T.J., Brugge, J.F. Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J. Comp. Neurol. 1978. V. 182 (4). P. 637–660.

  71. Imig T.J., Reale R.A. Pattern of cortico-cortical connections related to tonotopic maps in cat auditory-cortex. J. Comp. Neurol. 1980. V. 192. P. 293–332.

  72. Imig T.J., Irons W.A., Samson F.R. Single unit and sound pressure level of selectivity to azimuthal direction noise bursts in cat high-frequency primary auditory cortex. J. Neurophysiol. 1990. V. 63. P. 1448–1466.

  73. Katsuki Y., Watanabe T., Maruyama N. Activity of auditory neurons in upper levels of brain of cat. J. Neurophysiol. 1959. V. 22 (4). P. 343–359.

  74. Kenmochi M., Eggermont J.J. Autonomous cortical rhythms affect temporal modulation transfer functions. NeuroReport. 1997. V. 8 (7). P. 1589–1593. https://doi.org/10.1097/00001756-199705060-00008

  75. Kim S., Manyam S.C., Warren D.J., Normann R.A Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Ann. Biomed. Eng. 2006. V. 34. P. 300–309. https://doi.org/10.1007/s10439-005-9037-9

  76. Kok M.A., Stolzberg D., Brown T.A., Lomber S.G. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex. J. Neurophysiol. 2015. V. 113 (2). P. 475–486. https://doi.org/10.1152/jn.00682.2014

  77. Kok M.A., Lomber S.G. Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness. Hear Res. 2017. V. 343. P. 108–117. https://doi.org/10.1016/j.heares.2016.05.013

  78. Langner G., Dinse H.R., Godde B. A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neurosci. 2009. V. 3 Art. 27. https://doi.org/10.3389/neuro.07.027.2009

  79. Lee C.C., Imaizumi K., Schreiner C.E., Winer J.A., Concurrent tonotopic processing streams in auditory cortex. Cereb. Cortex. 2004a. V. 14. P. 441–451.

  80. Lee C.C., Schreiner C.E., Imaizumi K., Winer J.A. Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience. 2004b. V. 128. P. 871–887.

  81. Lee C.C., Winer J.A. Connections of cat auditory cortex: I. Thalamocortical system. J. Comp. Neurol. 2008. V. 507. P. 1879–1900.

  82. Lee C.C., Winer J.A. Convergence of thalamic and cortical pathways in cat auditory cortex. Hear. Res. 2011. V. 274. P. 85–94.

  83. Lu T., Wang X. Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. J. Neurophysiol. 2000. V. 84. P. 236–246.

  84. Ma H., Qin L., Dong C., Zhong R., Sato Y. Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory field of awake cats. PLoS One. 2013. V. 8(1). e52942. https://doi.org/10.1371/journal.pone.0052942

  85. Mendelson J.R., Cynader M.S. Sensitivity of cat primary auditory cortex (Al) neurons to the direction and rate of frequency modulation. Brain Res. 1985. V. 327 (1–2). P. 331–335.

  86. Mendelson J.R. Grasse K.L. A comparison of monaural and binaural responses to frequency modulated (FM) sweeps in cat primary auditorycortex. Exp. Brain Res. 1992. V. 91. P. 435–454.

  87. Merzenich M.M., Knight P.L., Roth G.L. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 1975. V. 38. P. 231–249.

  88. Mickey B.J., Middlebrooks J.C. Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J. Neurophysiol. 2001. V. 86. P. 1333–1350.

  89. Mickey B.J., Middlebrooks J.C. Representation of auditory space by cortical neurons in awake cats. Neuroscience. 2003. V. 23. P. 8649–8663.

  90. Mickey B.J., Middlebrooks J.C. Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. J. Neurophysiol. 2005. V. 94 (2). P. 979–989. https://doi.org/10.1152/jn.00580.2004

  91. Middlebrooks J.C., Dykes R.W., Merzenich M.M., Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours. Brain Res. 1980. V. 181. P. 31–48.

  92. Miller L.M., Escabí M.A., Read H.L., Schreiner C.E. Functional convergence of response properties in the auditory thalamocortical system. Neuron. 2001. V. 32. P. 151–160.

  93. Moshitch D., Las L., Ulanovsky N., Bar-Yosef O., Nelken I. Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J. Neurophysiol. 2006. V. 95. P. 3756–3769.

  94. Moshitch D., Nelken I. The representation of interaural time differences in high-frequency auditory cortex. Cerebral Cortex. 2014. V. 26 (2). P. 656–668. https://doi.org/10.1093/cercor/bhu230

  95. Nakamoto K.T., Zhang J., Kitzes L.M. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex. J. Neurophysiol. 2006. V. 95. P. 1897–1907.

  96. Nelken I., Prut Y., Vaadia E., Abeles M. In search of the best stimulus: An optimization procedure for finding efficient stimuli in the cat auditory cortex. Hear. Res. 1994. V. 72. P. 237–253.

  97. Nelken I., Rotman Y., Yosef O.B. Responses of auditory-cortex neurons to structural features of natural sounds. Nature. 1999. V. 397 (6715). P. 154–157. https://doi.org/10.1038/16456

  98. Norena A.J., Gourevitch B., Pienkowsky M., Shaw G., Eggermont J.J. Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. J. Neurosci. 2008. V. 28 (36). P. 8885–8896. https://doi.org/10.1523/jneurosci.2693-08.2008

  99. Osanai H., Tateno T. Neural response differences in the rat primary auditory cortex under anesthesia with ketamine versus the mixture of medetomidine, midazolam and butorphanol. Hear. Res. 2016. V. 339. P. 69–79.

  100. Phillips D.P. Factors shaping the response latencies of neurons in the cat’s auditory cortex. Behav. Brain Res. 1998. V. 93. P. 33–41.

  101. Phillips D.P., Cynader M.S. Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear. Res. 1985. V. 18. P. 87–102.

  102. Phillips D.P., Irvine D.R. Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. J. Neurophysiol. 1981a. V. 45. P. 48–58.

  103. Phillips D.P., Irvine D.R. Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear. Res. 1981b. V. 4. P. 299–307.

  104. Phillips D.P., Hall S.E. Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations. Exp. Brain Res. 1987. V. 67 (3). P. 479–492.

  105. Phillips D.P., Hall S.E. Response timing constraints on the cortical representation of sound time structure. J. Acoust. Soc. Amer. 1990. V. 88 (3). P. 1403–1411.

  106. Phillips D.P., Orman S.S., Musicant A.D., Wilson G.F. Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide-spectrum noise. Hear. Res. 1985. V. 18 (1). P. 73–86.

  107. Phillips D.P., Semple M.N., Calford M.B., Kitzes L.M. Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp. Brain Res. 1994. V. 102. P. 210–226.

  108. Phillips D.P., Taylor T.L., Hall S.E., Carr M.M., Mossop J.E. Detection of silent intervals between noises activating different perceptual channels: Some properties of “central” auditory gap detection. J. Acoust. Soc. Amer. 1997. V. 101 (6) P. 3694–3705. https://doi.org/10.1121/1.419376

  109. Pienkwoski M., Shaw G., Eggermont J.J. Wiener-Volterra characterization of neurons in primary auditory cortex using Poisson-distributed impulse train inputs. J. Neurophysiol. 2009. V. 101. P. 3031–3041.

  110. Pienkowski M., Eggermont J.J. Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds. J. Neurophysiol. 2011. V. 106. P. 1016–1027.

  111. Poirier P., Jiang H., Lepore F., Guillemot J.-P. Positional, directional and speed selectivities in the primary auditory cortex of the cat. Hear. Res. 1997. V. 113 (1–2). P. 1–13. https://doi.org/10.1016/s0378-5955(97)00126-3

  112. Qin L., Kitama T., Chimoto S., Sakayori S., Sato Y. Time course of tonal frequency-response-area of primary auditory cortex neurons in alert cats. Neuroscience Research. 2003. V. 46 (2). P. 145–152. https://doi.org/10.1016/s0168-0102(03)00034-8

  113. Qin L., Sakai M., Chimoto S., Sato Y. Interaction of excitatory and inhibitory frequency-receptive fields in determining fundamental frequency sensitivity of primary auditory cortex neurons in awake cats. Cerebral Cortex. 2004a. V. 15 (9). P. 1371–1383. https://doi.org/10.1093/cercor/bhi019

  114. Qin L., Chimoto S., Sakai M., Sato Y. Spectral-shape preference of primary auditory cortex neurons in awake cats. Brain Research. 2004 b. V. 1024 (1–2). P. 167–175. https://doi.org/10.1016/j.brainres.2004.07.061

  115. Qin L., Chimoto S., Sakai M., Wang J., Sato Y. Comparison between offsetand onset responses of primary auditory cortex ON-OFF neurons in awake cats. J. Neurophysiol. 2007. V. 97. P. 3421–3431.

  116. Qin L., Wang J., Sato Y. Heterogeneous neuronal responses to frequencymodulated tones in the primary auditory cortex of awake cats. J. Neurophysiol. 2008a. V. 100. P. 1622–1634.

  117. Qin L., Wang J., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008b. V. 99. P. 2305–2319.

  118. Qin L., Liu Y., Wang J., Li S., Sato Y. Neural and behavioral discrimination of sound duration by cats J. Neurosci. 2009. V. 29 (50). P. 15650–15659.

  119. Rajan R., Aitkin L.M., Irvine D.R. Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J. Neurophysiol. 1990. V. 64 (3). P. 888–902. https://doi.org/10.1152/jn.1990.64.3.888

  120. Rajan R., Irvine D.R., Wise L.Z., Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 1993. V. 338. P. 17–49.

  121. Read H.L., Miller L.M., Schreiner C.E., Winer J.A. Two thalamic pathways to primary auditory cortex. Neuroscience. 2008. V. 152. P. 151–159.

  122. Reale R.A., Imig T.J. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol. 1980. V. 192. P. 265–291.

  123. Reale R.A., Brugge J.F. Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. J. Neurophysiol. 2000. V. 84. P. 435–450.

  124. Ribaupierre F., Goldstein M.H., Yeni-Komshian G. Intracellular study of the cat’s primary auditory cortex. Brain Research. 1972a. V. 48. P. 185–204. https://doi.org/10.1016/0006-8993(72)90178-3

  125. Ribaupierre F., Goldstein M.H., Yeni-Komshian G. Cortical coding of repetitive acoustical pulses. Brain Research. 1972b. V. 48. P. 205–225.

  126. Rouiller E.M., Simm G.M., Villa A.E.P., De Ribaupierre Y., De Ribaupierre F. Auditory corticocortical interconnections in the cat – evidence for parallel andhierarchical arrangement of the auditory cortical areas. Exp. Brain Res. 1991. V. 86. P. 483–505.

  127. Sakai M., Chimoto S., Qin L., Sato Y. Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: Relevance to auditory scene analysis. Brain Res. 2009. V. 1265. P. 80–92.

  128. Schreiner C.E., Mendelson J.R., Sulter M.L. Functional topography of cat primary auditory cortex: representation of tone intensity. Exp. Brain Res. I992. V. 7. P. 105–127.

  129. Schreiner C.E., Calhoun B.M Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. Auditory Neuroscience. 1994. V. 1 (1). P. 39–61.

  130. Schreiner C.E. Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiol. Neurootol. 1998. V. 3. P. 104–122.

  131. Schreiner C.E., Mendelson J.R. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J. Neurophysiol. 1990. V. 64. P. 1442–1459.

  132. Schreiner C.E., Mendelson J., Raggio M.W., Brosch M., Krueger K. Temporal processing in cat primary auditory cortex. Acta Otolaryngol Suppl. 1997. V. 532. P. 54–60.

  133. Schreiner C.E., Read H.L., Sutter M.L. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 2000.V. 23. P. 501–529.

  134. Schreiner C.E., Sutter M.L. Topography of excitatory bandwidth in catprimary auditory cortex: single-neuron versus multiple-neuron recordings. J. Neurophysiol. 1992. V. 68. P. 1487–1502.

  135. Schreiner C.E., Urbas J.V. Representation of amplitude modulation in the auditory cortex of the cat: comparison between cortical fields. Hear. Res. 1988. V. 32. P. 49–64.

  136. Seki S., Eggermont J.J., Changes in cat primary auditory cortexafter minor-to-moderate pure-tone induced hearing loss. Hear. Res. 2002. V. 173. P. 172–186.

  137. Sovijarvi A.R.A., Sainio K. Neuroleptanalgesia and the function of the auditory cortex in the cat. Anesthesiology. 1972. V. 37. P. 406–412.

  138. Sovijarvi A.R.A. Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta physiol. scand. 1975. V. 93. P. 318–335.

  139. Stumpf E., Toronchuk J.M., Cynader M.S. Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three dimensional space. Exp. Brain Res. 1992. V. 88. P. 158–168.

  140. Suga N., Tsuzuki K. Inhibition and leveltolerant frequency tuning in the auditory cortex of the mustached bat. J. Neurophysiol. 1985. V. 53. P. 1109–1145.

  141. Sutter M.L., Schreiner C.E. Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J. Neurophysiol. 1991. V. 65. P. 1207–1226.

  142. Sutter M.L., Schreiner C.E. Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J. Neurophysiol. 1995. V. 73. P. 190–204.

  143. Sutter M.L., Schreiner C.E., McLean M., O’Connor K.N., Loftus, W.C. Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J. Neurophysiol. 1999. V. 82 (5). P. 2358–2371. https://doi.org/10.1152/jn.1999.82.5.2358

  144. Tan A.Y., Atencio C.A., Polley D.B., Merzenich M.M., Schreiner C.E., Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neurosci. 2007. V. 146. P. 449–462.

  145. Toronchuk J.M., Stumpf E., Cynader M.S. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp. Brain Res. 1992. V. 88 (1) P. 169–180.

  146. Volkov I.O., Galazyuk A.V. Responses of auditory cortex neurons in unanesthetized cats to best-frequency tones. Neurophysiology. 1986. V. 17 (4). P. 360–367. https://doi.org/10.1007/bf01052348

  147. Volkov I.O., Galazyuk A.V. Formation of spike response to sound tones in cat auditory cortex neurons: Interaction of excitatory and inhibitory effects. Neurosci. 1991. V. 43 (2–3). P. 307–321.

  148. Volkov I.O., Galazyuk A.V. Peculiarities of inhibition in cat auditory cortex neurons evoked by tonal stimuli of various durations. Exp. Brain Res. 1992. V. 91 (1). P. 115–120. https://doi.org/10.1007/bf00230019

  149. Watanabe T., Katsuki Y. Response patterns of single auditory neurons of the cat to speciesspecific vocalization. Japan. J. Physiol. 1974. V. 24 (2). P. 135–155. https://doi.org/10.2170/jjphysiol.24.135

  150. Wang X., Kadia S.C. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 2001. V. 86. P. 2616–2620.

  151. Wang X., Lu T., Bendor D., Bartlett E. Neural coding of temporal information in auditory thalamus and cortex. Neurosci. 2008. V. 154 (1). P. 294–303. https://doi.org/10.1016/j.neuroscience.2008.03.065

  152. Wang J., Qin L., Chimoto S., Tazunoki S., Sato Y. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds. Neurosci. 2014. V. 256. P. 309–321. https://doi.org/10.1016/j.neuroscience.2013.10.042

  153. Winer J.A. Decoding the auditory corticofugal systems. Hear. Res. 2006. V. 207. P. 1–9.

  154. Winer J.A., Diamond I.T., Raczkowski D. Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J. Comp. Neurol. 1977. V. 176. P. 387–418.

  155. Winer J.A., Lee C.C. The distributed auditory cortex. Hear. Res. 2007. V. 229 (1–2). P. 3–13. https://doi.org/10.1016/j.heares.2007.01.017

  156. Woody C.D., Zotova E., Gruen E.Multiple representations of information in the primary auditory cortex of cats. Brain Res. 2000. V. 868 (1). P. 56–65. https://doi.org/10.1016/s0006-8993(00)02276-9

  157. Yuan K., Shih J.Y., Winer J.A., Schreiner C.E. Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex. J. Neurosci. 2011. 31 (37). P. 13333–13342. https://doi.org/10.1523/jneurosci.1000-11.2011

  158. Zhang J., Nakamoto K.T., Kitzes L.M. Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex. J Neurophysiol. 2005. V. 94 (4). P. 2263–2274. https://doi.org/10.1152/jn.01207.2004

  159. Zhang J., Nakamoto K.T., Kitzes L.M. Responses of neurons in the cat primary auditory cortex to sequential sounds. Neurosci. 2009. V. 161. P. 578–588.

  160. Zhang X., Qin L., Liu Y., Dong C., Sato Y. Cat’s behavioral sensitivity and cortical spatiotemporal responses to the sweep direction of frequency-modulated tones. Behav. Brain. Res. 2011. V. 217. P. 315–325.

  161. Zhang X., Yang P., Dong C., Sato Y., Qin L. Correlation between neural discharges in cat primary auditory cortex and tone-detection behaviors. Behav. Brain Res. 2012. V. 232 (1) P. 114–123. https://doi.org/10.1016/j.bbr.2012.03.025

  162. Zotova E., Woody C.D., Gruen E. Multiple representations of information in the primary auditory cortex of cats: II. Stability and electrical microstimulation at coronal-pericruciate cortex of cat with change in early (<32 ms) components of activity after conditioning classical conditioning of different facial movements. Brain Res. 2000. V. 868. P. 66–78.

  163. Zurita P., Villa A.E., de Ribaupierre Y., de Ribaupierre F., Rouiller E.M. Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci. Res. 1994. V. 19. P. 303–316.

Дополнительные материалы отсутствуют.