Сенсорные системы, 2023, T. 37, № 2, стр. 152-161

Электроретинографические исследования экипажа 8-месячного международного эксперимента SIRIUS 20/21

В. В. Нероев 1, И. В. Цапенко 1, В. И. Котелин 1, М. В. Зуева 1*, О. М. Манько 2, А. М. Алескеров 2, Д. А. Подъянов 2

1 ФГБУ “Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца” Минздрава России
105062 Москва, ул. Садовая-Черногрязская, 14/19, Россия

2 ФГБУН ГНЦ РФ “Институт медико-биологических проблем” РАН
123007 Москва, Хорошевское ш., 76А, Россия

* E-mail: visionlab@yandex.ru

Поступила в редакцию 29.12.2022
После доработки 18.01.2023
Принята к публикации 28.02.2023

Аннотация

До и после 8-месячного международного эксперимента SIRIUS 20/21 проводился комплекс электрофизиологических исследований зрительной системы, включая регистрацию стандартных фотопических электроретинограмм (ЭРГ), ритмической ЭРГ на мелькания с частотой 8.3, 10, 12 и 24 Гц, фотопического негативного ответа и паттерн-ЭРГ. Целью работы являлась объективная оценка изменений функциональной активности нейронов сетчатки у членов экипажа наземной станции, связанных с длительной изоляцией и влиянием комплекса стрессорных факторов. Полученные результаты говорят об умеренной активации биоэлектрической активности фоторецепторов и биполярных клеток и небольшом снижении функции ганглиозных клеток сетчатки после выхода из изоляции. Выявленные изменения могут отражать адаптацию зрительной сенсорной системы испытателей к физической и психоэмоциональной нагрузке в условиях эксперимента. Дальнейшее изучение специфики изменений электроретинографических маркеров при возрастающей продолжительности периода изоляции необходимо для расширения представлений о стрессоустойчивости и адаптации зрительной системы при длительном нахождении человека в экстремальных условиях среды.

Ключевые слова: длительная изоляция, наземная станция, электроретинография, сетчатка, фоторецепторы, биполярные клетки сетчатки, ганглиозные клетки сетчатки, SIRIUS 20/21

Список литературы

  1. Бызов А.Л. Физиология зрения. М.: Наука, 1992. С. 115–161.

  2. Бызов А.Л. Функции нейроглии. Тбилиси: Мецниереба, 1979. С. 49–57.

  3. Зуева М.В., Нероев В.В., Цапенко И.В., Сарыгина О.И., Гринченко М.И., Зайцева С.И. Топографическая диагностика нарушений ретинальной функции при регматогенной отслойке сетчатки методом ритмической ЭРГ широкого спектра частот. Российский офтальмологический журнал. 2009. Т. 1. № 2. С. 18–23.

  4. Зуева М.В., Цапенко И.В. Клетки Мюллера: спектр и профиль глио-нейрональных взаимодействий в сетчатке. Российский физиологический журнал им. Сеченова. 2004. Т. 90. № 8. С. 435–436.

  5. Зуева М.В., Цапенко И.В. Электрофизиологическая характеристика глиально-нейрональных взаимоотношений при ретинальной патологии. Сенсорные системы. 1992. № 3. С. 58–63.

  6. Котелин В.И., Кириллова М.О., Зуева М.В., Цапенко И.В., Журавлева А.Н., Киселева О.А., Бессмертный А.М. Фотопический негативный ответ для оценки функции внутренней сетчатки: требования к регистрации и сравнение в глазах с естественной шириной зрачка и в условиях медикаментозного мидриаза. Офтальмология. 2020. Т. 17. № 3. С. 398–406. https://doi.org/10.18008/1816-5095-2020-3-398-406

  7. Нероев В.В., Зуева М.В., Журавлева А.Н., Цапенко И.В. Структурно-функциональные нарушения при глаукоме: перспективы доклинической диагностики. Часть 2. Электрофизиологические маркеры ранних нейропластических событий. Офтальмология. 2020. Т. 17. № 3s. С. 533–541. https://doi.org/10.18008/1816-5095-2020-3S-533-541

  8. Allen C.S., Giraudo M., Moratto C., Yamaguchi N. Spaceflight environment. In: Space safety and human performance [Internet]. Elsevier, 2018. P. 87–138.

  9. Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L., Meigen T., Viswanathan S. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013. V. 126 (1). P. 1–7. https://doi.org/10.1007/s10633-012-9353-y

  10. Bach M., Unsoeld A.S., Philippin H., Staubach F., Maier P., Walter H.S., Bomer T.G., Funk J. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci. 2006. V. 47 (11). P. 4881–4887. https://doi.org/10.1167/iovs.05-0875

  11. Basner M., Babisch W., Davis A., Brink M., Clark C., Janssen S., Stansfeld S. Auditory and non-auditory effects of noise on health. Lancet. 2014. V. 383 (9925). P. 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X

  12. Basner M., Dinges D.F., Mollicone D., Ecker A., Jones C.W., Hyder E.C., Di Antonio A., Savelev I., Kan K., Goel N., Morukov B.V., Sutton J.P. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc Natl Acad Sci U S A. 2013. V. 110 (7). P. 2635–40. https://doi.org/10.1073/pnas.1212646110

  13. Bush R.A., Sieving P.A. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci. 1994. V. 35 (2). P. 635–645.

  14. Clarke A.H., Haslwanter T. The orientation of Listing’s Plane in microgravity. Vision Res. 2007. V. 47. P. 3132–3140. https://doi.org/10.1016/J.VISRES.2007.09.001

  15. Clément G., Ngo-Anh J.T. Space Physiology II: Adaptation of the Central Nervous Systemto Space Flight-Past, Current, and Future Studies. Berlin: Springer-Verlag, 2013. https://doi.org/10.1007/s00421-012-2509-3

  16. Eckstein M.K., Guerra-Carrillo B., Miller Singley A.T., Bunge S.A. Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development? Dev Cogn Neurosci. 2017. V. 25. P. 69–91. https://doi.org/10.1016/J.DCN.2016.11.001

  17. Frishman L., Sustar M., Kremers J., McAnany J.J., Sarossy M., Tzekov R., Viswanathan S. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018. V. 36 (3). P. 207–211. https://doi.org/10.1007/s10633-018-9638-x

  18. Frishman L.J. Origins of the electroretinogram. Principles and Practice of Clinical Electrophysiology of Vision. London: MIT Press, 2006. P. 139–183.

  19. Granholm E., Asarnow R.F., Sarkin A.J., Dykes K.L. Pupillary responses index cognitive resource limitations. Psychophysiology. 1996. V. 33. P. 457–461. https://doi.org/10.1111/j.1469-8986.1996.tb01071.x

  20. Koles M., Hercegfi K. Eye tracking precision in a virtual CAVE environment. 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom) (Piscataway: IEEE), 2015. P. 319–322. https://doi.org/10.1109/CogInfoCom.2015.7390611

  21. Kondo M., Sieving P.A. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs. Invest Ophthalmol Vis Sci. 2001. V. 42 (1). P. 305–312.

  22. Machida S., Raz-Prag D., Fariss R.N., Sieving P.A., Bush R.A. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci. 2008. V. 49 (1). P. 442–52. https://doi.org/10.1167/iovs.07-0291

  23. Matsui Y., Katsumi O., Sakaue H., Hirose T. Electroretinogram b/a wave ratio improvement in central retinal vein obstruction. Br J Ophthalmol. 1994. V. 78 (3). P. 191–198. https://doi.org/10.1136/bjo.78.3.191

  24. McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015. V. 130 (1). P. 1–12. https://doi.org/10.1007/s10633-014-9473-7

  25. Mogilever N.B., Zuccarelli L., Burles F., Iaria G., Strapazzon G., Bessone L., Coffey E.B.J. Expedition cognition: A review and prospective of subterranean neuroscience with spaceflight applications. Front Hum Neurosci. 2018. V. 12. P. 407. https://doi.org/10.3389/fnhum.2018.00407

  26. Rajulu S. Human factors and safety in EVA. Space Safety and Human Performance. Butterworth-Heinemann, 2018. P. 469–500. https://doi.org/10.1016/B978-0-08-101869-9.00011-X

  27. Salgarelo T., Cozzupoli G.M., Giudiceandrea A., Fadda F., Placidi G., De Siena E., Amore F., Rizzo S., Falsini B. PERG adaptation for detection of retinal ganglion cell dysfunction in glaucoma: a pilot diagnostic accuracy study. Scientific Reports. 2021. V. 11. Article 22879.

  28. Sieving P.A., Murayama K., Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994. V. 11 (3). P. 519–532. https://doi.org/10.1017/S0952523800002431

  29. Stansfeld S.A., Matheson M.P. Noise pollution: non-auditory effects on health. Br Med Bull. 2003. V. 68. P. 243–257. https://doi.org/10.1093/bmb/ldg033

  30. Stockton R.A., Slaughter M.M. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989. V. 93 (1). P. 101–122. https://doi.org/10.1085/jgp.93.1.101

  31. Ventura L.M., Sorokac N., De Los Santos R., Feuer W.J., Porciatti V. The Relationship between Retinal Ganglion Cell Function and Retinal Nerve Fiber Thickness in Early Glaucoma. Invest Ophthalmol Vis Sci. 2006. V. 47 (9). P. 3904–3911. https://doi.org/10.1167/iovs.06-0161

  32. Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., Smith E.L. 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999. V. 40 (6). P. 1124–1136.

Дополнительные материалы отсутствуют.