Сенсорные системы, 2023, T. 37, № 2, стр. 93-118

Проблемы и перспективы новых методов световой стимуляции в зрительной реабилитации

М. В. Зуева 1*, В. И. Котелин 1, Н. В. Нероева 1, Д. В. Фадеев 1, О. М. Манько 2

1 ФГБУ “Национальный медицинский исследовательский центр глазных болезней им. Гельмгольца” Минздрава России
105062 Москва, ул. Садовая-Черногрязская 14/19, Россия

2 ФГБУН ГНЦ РФ “Институт медико-биологических проблем” РАН
123007 Москва, Хорошевское ш., 76А, Россия

* E-mail: visionlab@yandex.ru

Поступила в редакцию 27.12.2022
После доработки 14.03.2023
Принята к публикации 24.03.2023

Аннотация

Нейродегенеративные заболевания сетчатки, такие как возрастная макулярная дегенерация, глаукома, диабетическая ретинопатия остаются ведущими причинами слабовидения и слепоты в мире. Зрительная реабилитация больных, слабовидящих вследствие нейродегенеративных заболеваний сетчатки, требует решения проблем, связанных с нарушением структуры нейронных сетей и дефицитом, обеспечиваемых этими сетями зрительных функций. Несмотря на определенные успехи в применении инновационных методов терапии, актуальна разработка новых подходов к зрительной реабилитации для повышения качества жизни слабовидящих пациентов. В зрительной реабилитации широко применяют не только медикаментозные, но и разнообразные нефармакологические стратегии терапии для защиты и восстановления структуры сетчатки и ее функции. Среди них отдельную нишу занимают технологии зрительной стимуляционной терапии (фототерапии), анализ основных аспектов которых является задачей данного обзора. Вектор новых исследований в области фототерапии направлен на разработку методов, способных максимизировать пластичность зрительной системы для повышения эффективности ее защиты и восстановления при нейродегенеративной патологии. В этой связи большой потенциал в зрительной реабилитации имеют новые технологии фрактальной фототерапии.

Ключевые слова: нейродегенеративные заболевания, связанные с возрастом заболевания сетчатки, слабовидение, зрительная реабилитация, нейропластичность, фототерапия, фотобиомодуляция, биоритмы, фрактальная динамика

Список литературы

  1. Анищенко В.С. Динамические системы. Соросовский образовательный журнал. 1997. Вып. 11. С. 77. http://www.pereplet.ru/nauka/Soros/pdf/9711_077.pdf

  2. Балашова А.Н., Дитяев А.Э., Мухина И.В. Формы и механизмы гомеостатической синаптической пластичности. Современные технологии в медицине. 2013. Т. 5 (2). С. 98–107.

  3. Загускин С.Л. Методы и устройства хронодиагностики и биоуправляемой хронофизиотерапии. Современные вопросы биомедицины. 2018. Т. 2. № 3. С. 71–78.

  4. Загускин С.Л. Ритмы клетки и здоровье человека. Хронобиология и хрономедицина. Ростов н/Д: изд-во ЮФУ, 2010. 292 с.

  5. Зуева М.В. Перспективность применения нелинейной стимуляционной терапии в лечении травматических повреждений головного мозга и поддержании когнитивных функций у пожилых лиц. Обозрение психиатрии и медицинской психологии им. В.М. Бехтерева. 2018а. № 2. С. 36–43. https://doi.org/10.31363/2313-7053-2018-2-36-43

  6. Зуева М.В. Технологии нелинейной стимуляции: роль в терапии заболеваний головного мозга и потенциал применения у здоровых лиц. Физиология человека. 2018б. Т. 44. № 3. С. 62–73. https://doi.org/10.7868/S0131164618030074

  7. Зуева М.В., Каранкевич А.И. Стимулятор сложноструктурированными оптическими сигналами и способ его использования. Патент РФ 2680185. 2018.

  8. Зуева М.В., Ковалевская М.А., Донкарева О.В., Каранкевич А.И., Цапенко И.В., Таранов А.А., Антонян В.Б. Фрактальная фототерапия в нейропротекции глаукомы. Офтальмология. 2019. Т. 16. № 3. С. 317–328. https://doi.org/10.18008/1816-5095-2019-3-317-328

  9. Зуева М.В., Коголева Л.В., Катаргина Л.А. Пластичность сетчатки при ретинопатии недоношенных и перспективы фототерапии. Российский офтальмологический журнал. 2020. Т. 13. № 1. С. 77–84. https://doi.org/10.21516/2072-0076-2020-13-1-77-84

  10. Зуева М.В., Спиридонов И.Н., Семенова Н.А., Резвых С.В. Генератор фрактальных мельканий для биомедицинских исследований. Патент РФ 2014107497A. 2015.

  11. Кару Т.И., Афанасьева Н.И. Цитохром-с-оксидаза как первичный фотоакцептор при лазерном воздействии света видимого и ближнего ИК-диапазона на культуру клеток. Доклады АН. 1995. Т. 342 (5). С. 693–695.

  12. Комаров Ф.И., Загускин С.Л., Рапопорт С.И. Хронобиологическое направление в медицине: биоуправляемая хронофизиотерапия. Терапевтический архив. 1994. Т. 8. С. 3–6.

  13. Москвин С.В. К вопросу о механизмах терапевтического действия низкоинтенсивного лазерного излучения (НИЛИ). Вестник новых медицинских технологий. 2008. № 1. С. 42–45.

  14. Нероев В.В., Зуева М.В., Манахов П.А., Нероева Н.В., Шан А.В., Чуйкин Н.К., Фадеев Д.В. Способ улучшения функциональной активности зрительной системы с помощью фрактальной фототерапии с использованием стереоскопического дисплея. Патент РФ № 2773684. 2022а.

  15. Нероев В.В., Зуева М.В., Нероева Н.В., Фадеев Д.В., Котелин В.И., Сумин С.Л., Бурый Е.В. Устройство для фрактальной фотостимуляции зрительной системы. Патент РФ № 211969. 2022б.

  16. Нероев В.В., Зуева М.В., Нероева Н.В., Фадеев Д.В., Цапенко И.В., Охоцимская Т.Д., Котелин В.И., Павленко Т.А., Чеснокова Н.Б. Воздействие фрактальной зрительной стимуляции на здоровую сетчатку кролика: функциональные, морфометрические и биохимические исследования. Российский офтальмологический журнал. 2022в. Т. 15. № 3. С. 99–111. https://doi.org/10.21516/2072-0076-2022-15-3-99-111

  17. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.

  18. Пьянкова С.Д. Субъективные оценки визуальной сложности и эстетической привлекательности фрактальных изображений: индивидуальные различия и генетические влияния. Психологические исследования. 2019. Т. 12. № 63. С. 12. https://doi.org/10.54359/ps.v12i63.238

  19. Пьянкова С.Д. Фрактально аналитические исследования в психологии: особенности восприятия самоподобных объектов. Психологические исследования. 2016. Т. 9. № 46. С. 12.

  20. Смирнов В.В., Спиридонов Ф.Ф. Фрактальные модели стохастических процессов. Южносибирский научный вестник. 2013. № 1 (3). С. 99–102.

  21. Федер Е. Фракталы. М.: Мир, 1991. 254 с.

  22. Федотчев А.И. Фотоиндуцированные резонансные явления в электроэнцефалограмме человека как функция частоты, интенсивности и продолжительности стимуляции. Биофизика. 2001. Т. 46 (1). С. 112–117.

  23. Федотчев А.И., Бондарь А.Т. Тонкая структура ЭЭГ человека при разных частотах сенсорной стимуляции. Сенсорные системы. 1993. Т. 7 (2). С. 59–66.

  24. Федотчев А.И., Бондарь А.Т. Неспецифические механизмы адаптации ЦНС к прерывистым раздражениям, спектральная структура ЭЭГ и оптимальные параметры ритмических сенсорных воздействий. Успехи физиологических наук. 1996. Т. 27. № 4. С. 44–62.

  25. Федотчев А.И., Бондарь А.Т., Акоев И.Г. Резонансные явления ритмической световой стимуляции с различной интенсивностью и частотой в ЭЭГ человека. Журнал Высшая нервная деятельность им. И.П. Павлова. 2001. Т. 51 (1). С. 17–23.

  26. Хараузов А.К., Климук М.А., Пономарев В.А., Иванова Л.Е., Подвигина Д.Н. Электрофизиологическое исследование осцилляторной активности мозга обезьян macaca mulatta. Журнал эволюционной биохимии и физиологии. 2021. Т. 57. № 3. С. 257–271. https://doi.org/10.31857/S0044452921030050

  27. Шустер Г. Детерминированный хаос. М.: Мир, 1988.

  28. Adaikkan C., Middleton S.J., Marco A., Pao P.C., Mathys H., Kim D.N.W. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron. 2019. V. 102. P. 929–943. https://doi.org/10.1016/j.neuron.2019.04.011

  29. Agrawal T., Gupta G.K., Rai V., Carroll J.D., Hamblin M.R. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response. 2014. V. 12 (4). P. 619–649. https://doi.org/10.2203/dose-response.14-032.Agrawal

  30. Aks D., Sprott J. Quantifying aesthetic preference for chaotic patterns. Empir Stud Arts. 1996. V. 14 (1). P. 1–16.

  31. Albarracin R., Natoli R., Rutar M., Valter K., Provis J. 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina. BMC Neurosci. 2013. V. 14. P. 125. https://doi.org/10.1186/1471-2202-14-125

  32. Albarracin R., Valter K. 670 nm Red Light Preconditioning Supports Muller Cell Function: Evidence from the White Light-induced Damage Model in the Rat Retina. Photochem. Photobiol. 2012. V. 88 (6). P. 1418–1427. https://doi.org/10.1111/j.1751-1097.2012.01130.x

  33. Anders J.J., Arany P.R., Baxter G.D., Lanzafame R.J. Lightemitting diode therapy and low-level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg. 2019. V. 37. P. 63–65. https://doi.org/10.1089/PHOTOB.2018.4600

  34. Babiloni C., Babiloni F., Carducci F., Cincotti F., Vecchio F., Cola B., Rossi S., Miniussi C., Rossini P.M. Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behav. Neurosci. 2004. V. 118. P. 687–697. https://doi.org/10.1037/0735-7044.118.4.687

  35. Baldauf D., Desimone R. Neural mechanisms of object-based attention. Science. 2014. V. 344. P. 424–427. https://doi.org/10.1126/science.1247003

  36. Barlow J.S. An electronic method for detecting evoked responses of the brain and for reproducing their average waveforms. Electroencephalography and Clinical Neurophysiology. 1957. V. 9 (2). P. 340–343. https://doi.org/10.1016/0013-4694(57)90068-8

  37. Barlow J.S. Rhythmic activity induced by photic stimulation in relation to intrinsic alpha activity of the brain in man. Electroencephalography and Clinical Neurophysiology. 1960. V. 12 (2). P. 317-326. https://doi.org/10.1016/0013-4694(60)90005-5

  38. Basar E., Emek-Savaş D.D., Guntekin B., Yener G. Delay of cognitive gamma responses in Alzheimer’s disease. NeuroImage Clin. 2016. V. 11. P. 106–115. https://doi.org/10.1016/j.nicl.2016.01.015

  39. Begum R., Powner M.B., Hudson N., Hogg C., Jeffery G. Treatment with 670 nm light upregulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE. 2013. V. 8. P. e57828. https://doi.org/10.1371/journal.pone.0057828

  40. Bell G., Marino A., Chesson A., Struve F. Electrical states in the rabbit brain can be altered by light and electromagnetic fields. Brain Res. 1992. V. 570 (1–2). P. 307–15. https://doi.org/10.1016/0006-8993(92)90595-z

  41. Bergandi L., Silvagno F., Grisolia G., Ponzetto A., Rapetti E., Astori M., Vercesi A., Lucia U. The Potential of Visible and Far-Red to Near-Infrared Light in Glaucoma Neuroprotection. Appl. Sci. 2021. V. 11. P. 5872. https://doi.org/10.3390/app11135872

  42. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929. V. 87. P. 527–570. https://doi.org/10.1007/BF01797193

  43. Bonaconsa M., Colavito V., Pifferi F., Aujard F., Schenker E., Dix S., Grassi-Zucconi G., Bentivoglio M., Bertini G. Cell clocks and neuronal networks: neuron ticking and synchronization in aging and aging-related neurodegenerative disease. Curr. Alzheimer Res. 2013. V. 10 (6). P. 597–608. https://doi.org/10.2174/15672050113109990004

  44. Bondar A., Shubina L. Nonlinear reactions of limbic structure electrical activity in response to rhythmical photostimulation in guinea pigs. Brain Research Bulletin. 2018. V. 143. P. 73–82. https://doi.org/10.1016/j.brainresbull.2018.10.002

  45. Cameron M.A., Al Abed A., Buskila Y., Dokos S., Lovell N.H., Morley J.W. Differential effect of brief electrical stimulation on voltage-gated potassium channels. J Neurophysiol. 2017. V. 117 (5). P. 2014–2024. https://doi.org/10.1152/jn.00915.2016

  46. Chan J.W., Chan N.C., Sadun A.A. Glaucoma as Neurodegeneration in the Brain. Eye Brain. 2021. V. 13. P. 21–28. https://doi.org/10.2147/EB.S293765

  47. Chen Y. Zipf’s law, 1/f noise, and fractal hierarchy. Chaos, Solitons & Fractals. 2012. V. 45 (1). P. 63–73. https://doi.org/10.1016/j.chaos.2011.10.001

  48. Cheng W., Law P.K., Kwan H.C., Cheng R.S. Stimulation Therapies and the Relevance of Fractal Dynamics to the Treatment of Diseases. OJRM. 2014. V. 3. P. 73–94. https://doi.org/10.4236/ojrm.2014.34009

  49. Cheng Y., Du Y., Liu H., Tang J., Veenstra A., Kern T.S. Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy. Diabetes. 2018. V. 67 (2). P. 291–298. https://doi.org/10.2337/db17-0803

  50. Cheung N., Donaghue K.C., Liew G., Rogers S.L., Wang J.J., Lim S.W., Jenkins A.J., Hsu W., Li Lee M., Wong T.Y. Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care. 2009. V. 32 (1). P. 106–110. https://doi.org/10.2337/dc08-1233

  51. Chung H., Dai T., Sharma S.K., Huang Y.-Y., Carroll J.D., Hamblin M.R. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012. V. 40. P. 516–533. https://doi.org/10.1007/s10439- 011- 0454-7

  52. Das M., Das D.K. Molecular mechanism of preconditioning. IUBMB Life. 2008. V. 60 (4). P. 199–203. https://doi.org/10.1002/iub.31

  53. Di Ieva A., Esteban F.J., Grizzi F., Klonowski W., Martín-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015. V. 21 (1). P. 30–43. https://doi.org/10.1177/1073858413513928

  54. Di Ieva A., Grizzi F., Jelinek H., Pellionisz A.J., Losa G.A. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2014. V. 20 (4). P. 403–417. https://doi.org/10.1177/1073858413513927

  55. Eells J.T., Wong-Riley M.T., VerHoeve J., Henry M., Buchman E.V., Kane M.P., Gould L.J., Das R., Jett M., Hodgson B.D., Margolis D., Whelan H.T. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004. V. 4. P. 559–567. https://doi.org/10.1016/j.mito.2004.07.033

  56. Eells J.T., Henry M.M., Summerfelt P., Wong-Riley M.T., Buchmann E.V., Kane M., Whelan N.T., Whelan H.T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003. V. 100 (6). P. 3439–3444. https://doi.org/10.1073/pnas.0534746100

  57. Ellinger F. Medical Radiation Biology. Springfield, 1957.

  58. Falsini B., Riva C.E., Logean E. Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest. Ophthalmol. Vis. Sci. 2002. V. 43. P. 2309–2316.

  59. Finsen N. La Phototherapie. Paris: Carre ed Naud, Finsen Medicinske Lysinstitut de Copenhague, 1899.

  60. Gamaleya N.F., Laser Biomedical Research in the USSR. Laser Applications in Medicine and Biology. Springer US: Boston, MA, 1977. P. 1–173.

  61. Gaiarsa J.L., Caillard O., Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 2002. V. 25 (11). P. 564–70. https://doi.org/10.1016/s0166-2236(02)02269-5

  62. Geneva I.I. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016. V. 9 (1). P. 145–152. https://doi.org/10.18240/ijo.2016.01.24

  63. Gerrow K., Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010. V. 20 (5). P. 631–9. https://doi.org/10.1016/j.conb.2010.06.010

  64. Geula C. Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology. 1998. V. 51 (1). P. S18. https://doi.org/10.1212/wnl.51.1_suppl_1.s18

  65. Giacci M., Wheeler L., Lovett S., Dishington E., Majda B., Bartlett C., Thornton E., Harford-Wright E., Leonard A., Vink R., Harvey A.R., Provis J., Dunlop S. Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS ONE. 2014. V. 9 (8). P. e104565.https://doi.org/10.1371/journal.pone.0104565

  66. Gidday J.M. Adaptive plasticity in the retina: protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond. Med. 2018. V. 1 (2). P. 85–97.

  67. Gilbert C.D., Li W. Adult Visual Cortical Plasticity. Neuron. 2012. V. 75 (2). P. 250–264. https://doi.org/10.1016/j.neuron.2012.06.030

  68. Goldberger A.L. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. The Lancet. 1996; V. 347 (9011). P. 1312–1314. https://doi.org/10.1016/s0140-6736(96)90948-4

  69. Goldberger A.L. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect. Biol. Med. 1997. V. 40. P. 543–561. https://doi.org/10.1353/pbm.1997.0063

  70. Goldberger A.L., Amaral L.A.N., Harsdorf J.M., Ivanov P.Ch., Peng C.-K., Stanley H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Nat. Acad. Sci. 2002. V. 99 (1). P. 2466–2472. https://doi.org/10.1073/pnas.012579499

  71. Goldberger A.L., Ridney D.R., West B.J. Chaos and fractals in human physiology. Sci. Am. 1990. V. 262 (2). P. 42–49. https://doi.org/10.1038/scientificamerican0290-42

  72. Guevara Erra R., Perez Velazquez J.L., Rosenblum M. Neural Synchronization from the Perspective of Non-linear Dynamics. Front Comput Neurosci. 2017. V. 11. P. 98. https://doi.org/10.3389/fncom.2017.00098

  73. Halley J.M., Inchausti P. The increasing importance of 1/f noise as models of ecological variability. Fluctuation and Noise Letters. 2004. V. 4 (2). R1–R26. https://doi.org/10.1142/S0219477504001884

  74. Hastings M.H., Reddy A.B., Maywood E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003. V. 4 (8). P. 649–661. https://doi.org/10.1038/nrn1177

  75. Hausdorff J.M., Ashkenazy Y., Peng C.K., Ivanov P.C., Stanley H.E., Goldberger A.L. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A. 2001. V. 302. P. 138–147. https://doi.org/10.1016/s0378-4371(01)00460-5

  76. Hazard C., Kimport C., and Johnson D. (1998–1999). Fractal Music. Research Project. Available 1 December 2015 at: http://www.tursiops.cc/fm/

  77. Heinrichs-Graham E., Kurz M.J., Becker K.M., Santamaria P.M., Gendelman H.E., Wilson T.W. Hypersynchrony despite pathologically reduced beta oscillations in patients with Parkinson’s disease: a pharmaco-magnetoencephalography study. J. Neurophysiol. 2014. V. 112. P. 1739–1747. https://doi.org/10.1152/jn.00383.2014

  78. Heiskanen V., Hamblin M.R. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018. V. 17. P. 1003–1017. https://doi.org/10.1039/c8pp9 0049c

  79. Henrich-Noack P., Sergeeva E.G., Eber T., You Q., Voigt N., Köhler Y., Wagner S., Lazik S., Mawrin Ch., Xu G., Biswas S., Sabel B.A., Kai-Shun Leung Ch. Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage. Scientific Reports. 2017. V. 7. P. 627. https://doi.org/10.1038/s41598-017-00487-z

  80. Herz D.M., Florin E., Christensen M.S., Reck C., Barbe M.T., Tscheuschler M.K. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson’s disease. Cereb Cortex. 2014. V. 24 (11). P. 2873. https://doi.org/10.1093/cercor/bht140

  81. Huang T.L., Charyton C. A comprehensive review of the psychological effects of brainwave entrainment. Altern Ther Health Med. 2008. V. 14 (5). P. 38–50.

  82. Iaccarino H.F., Singer A.C., Martorell A.J., Rudenko A., Gao F., Gillingham T.Z. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016. V. 540. P. 230–235. https://doi.org/10.1038/nature20587

  83. Ingold N. Lichtduschen: geschichte einer gesundheitstechnik. 1890–1975. Zürich. Switzerland: Chronos Verlag, 2015. 280 p. URL: library.oapen.org/handle/20.500.12657/31817.

  84. Ivandic B.T., Ivandic T. Low-level laser therapy improves vision in a patient with retinitis pigmentosa. Photomed Laser Surg. 2014. V. 32 (3). P. 181–184. https://doi.org/10.1089/pho.2013.3535

  85. Ivanova E., Yee C.W., Baldoni R., Sagdullaev B.T. Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36- containing gap junctions. Exp Eye Res. 2016. V. 150. P. 81–89. https://doi.org/10.1016/j.exer.2015.05.013

  86. Jean-Louis G., Zizi F., Lazzaro D.R., Wolintz A.H. Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms. 2008; 6: 1. https://doi.org/10.1186/1740-3391-6-1

  87. Johnstone D.M., Moro C., Stone J., Benabid A.-L., Mitrofanis J. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 2016. V. 9. Art. № 500. https://doi.org/10.3389/fnins.2015.00500

  88. Kaladchibachi S., Fernandez F. Precision Light for the Treatment of Psychiatric Disorders. Neural Plast. 2018. V. 2018. P. 5868570. https://doi.org/10.1155/2018/5868570

  89. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. Biol. 1999. V. 49 (1). P. 1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

  90. Karu T.I., Pyatibrat L.V., Kolyakov S.F., Afanasyeva N.I. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B. 2005. V. 81 (2). P. 98–106. https://doi.org/10.1016/j.jphotobiol.2005.07.002

  91. Kim S., Kim S., Khalid A., Jeong Y., Jeong B., Lee S.T., Jung K.H., Chu K., Lee S.K., Jeon D. Rhythmical Photic Stimulation at Alpha Frequencies Produces Antidepressant-Like Effects in a Mouse Model of Depression. PLoS One. 2016. V. 4. 11 (1). P. e0145374. https://doi.org/10.1371/journal.pone.0145374

  92. Kim S.I., Jeong J., Kwak Y., Kim Y.I., Jung S.H., Lee K. J. Fractal Stochastic Modeling of Spiking Activity in Suprachiasmatic Nucleus Neurons. J Comput Neurosci. 2005. V. 19. P. 39–51. https://doi.org/10.1007/s10827-005-0149-x

  93. Klausner G., Troussier I., Canova CH., Bensadoun R.‑J. Clinical use of photobiomodulation as a supportive care during radiation therapy. Support Care Cancer. 2022. V. 30. P. 13–19. https://doi.org/10.1007/s00520-021-06518-w

  94. Klimesch W., Sauseng P., Gerloff C. Enhancing Cognitive Performance with Repetitive Transcranial Magnetic Stimulation at Human Individual Alpha Frequency. Eur J Neurosci. 2003. V. 17 (5). P. 1129–1133. https://doi.org/10.1046/j.1460-9568.2003.02517.x

  95. Koenig T., Prichep L., Dierks T., Hubl D., Wahlund L.O., John E.R., Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005. V. 26 (2). P. 165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008

  96. Koch S., Della-Morte D., Dave K.R., Sacco R.L., Perez-Pinzon M.A. Biomarkers for ischemic preconditioning: finding the responders. J. Cereb. Blood. Flow Metab. 2014. V. 34 (6). P. 933–941. https://doi.org/10.1038/jcbfm.2014.42

  97. Laaksonen K., Helle L., Parkkonen L., Kirveskari E., Mäkelä J.P., Mustanoja S., Tatlisumak T., Kaste M., Forss N. Alterations in spontaneous brain oscillations during stroke recovery. PLoS One. 2013. V. 8. P. e61146. https://doi.org/10.1371/journal.pone.0061146

  98. Lazarev V.V., Simpson D.M., Schubsky B.M., Deazevedo L.C. Photic driving in the electroencephalogram of children and adolescents: harmonic structure and relation to the resting state. Braz J Med Biol Res. 2001. V. 34 (12). P. 1573–1584. https://doi.org/10.1590/s0100-879x2001001200010

  99. Lee K., Park Y., Suh S.W. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep. 2021. V. 11. P. 16206. https://doi.org/10.1038/s41598-021-95550-1

  100. Li Y., Tong Sh., Liu D., Gai Y., Wang X., Wang J., Qui Y., Zhu Y. Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 2008. V. 119. P. 1232–1241. https://doi.org/10.1016/j.clinph.2008.01.104

  101. Lipsitz L.A. Aging as a Process of Complexity Loss. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_28

  102. Liu J., Tong K., Lin Y., Lee V.W.H., So K.F., Shih K.C., Lai J.S.M., Chiu K. Effectiveness of Microcurrent Stimulation in Preserving Retinal Function of Blind Leading Retinal Degeneration and Optic Neuropathy: A Systematic Review. Neuromodulation. 2021. V. 24 (6). P. 992–1002. https://doi.org/10.1111/ner.13414

  103. Liu X., Zhang C., Ji Z., Ma Y., Shang X., Zhang Q., Zheng W., Zheng W., Li X., Gao J., Wang R., Wang J., Yu H. Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel–Ziv complexity. Cogn. Neurodyn. 2016. V. 10 (2). P. 121–133. https://doi.org/10.1007/s11571-015-9367-8

  104. Liu Y.L., Gong S.Y., Xia S.T., Wang Y.L., Peng H., Shen Y., Liu C.F. Light therapy: a new option for neurodegenerative diseases. Chinese Medical Journal. 2021. V. 134 (6). P. 634–645. https://doi.org/10.1097/CM9.0000000000001301

  105. Lowen S.B., Teich V.C. Fractal renewal processes generate 1/f noise. Physical review A. Atomic, molecular, and optical physics. 1993. V. 47 (2). P. 992–1001. https://doi.org/10.1103/PhysRevE.47.992

  106. Lowen S.B., Ozaki T., Kaplan E., Saleh B.E.A., Teich M.C. Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods. 2001. V. 24. P. 377–394. https://doi.org/10.1006/meth.2001.1207

  107. Ly T., Gupta N., Weinreb R.N. Kaufman P.L., Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011. V. 51 (2). P. 243–250. https://doi.org/10.1016/j.visres.2010.08.003

  108. Mandelbrot B.B. The Fractal Geometry of Nature. Freeman: New York, 1982.

  109. Martorell A., Paulson A.L., Suk H.J., Abdurrob F., Drummond G., Guan W., Young J., Kim D., Kritskiy O., Barker S., Mangena V., Prince S., Brown E., Chung K., Boyden E.S., Singer A.C., Tsai L.H. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell. 2019. V. 177 (2). P. 256–271. https://doi.org/10.1016/j.cell.2019.02.014

  110. McDermott B., Porter E., Hughes D., McGinley B., Lang M., O’Halloran M., Jones M. Gamma Band Neural Stimulation in Humans and the Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. J Alzheimers Dis. 2018. V. 65 (2). P. 363–392. https://doi.org/10.3233/JAD-180391

  111. McDonagh A.F. Phototherapy: From Ancient Egypt to the New Millennium. J. Perinatol. 2002. V. 21 (1). P. S7–S12. https://doi.org/10.1038/sj.jp.7210625

  112. Menzler J., Channappa L., Zeck G. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One. 2014. V. 9 (8). P. e106047. https://doi.org/10.1371/journal.pone.0106047

  113. Mester E., Ludany G., Selyei M., Szende B., Total G.J. The stimulating effect of low power laser rays on biological systems. Laser Rev. 1968. V. 1. P. 3.

  114. Mcallister A.K. Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex. 2000. V. 10 (10). P. 963–973. https://doi.org/10.1093/cercor/10.10.963

  115. Najjar R.P., Zeitzer J.M. Temporal integration of light flashes by the human circadian system. J. Clin. Invest. 2016. V. 126 (3). P. 938–947. https://doi.org/10.1172/JCI82306

  116. Natoli R., Valter K., Barbosa M., Dahlstrom J., Rutar M., Kent A., Provis J. 670nm Photobiomodulation as a Novel Protection against Retinopathy of Prematurity: Evidence from Oxygen Induced Retinopathy Models. PLoS ONE. 2013. V. 8 (8). P. e72135. https://doi.org/10.1371/journal.pone.0072135

  117. Natoli R., Zhu Y., Valter K., Bisti S., Eells J., Stone J. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010. V. 16. P. 1801–1822.

  118. Noonan J.E., Lamoureux E.L., Sarossy M. Neuronal activity-dependent regulation of retinal blood flow. Clin. Exp. Ophthalmol. 2015. V. 43. P. 673–682. https://doi.org/10.1111/ceo.12530

  119. Notbohm A., Herrmann C.S. Flicker regularity is crucial for entrainment of alpha oscillations. Front. Human Neurosci. 2016. V. 10. P. 503. https://doi.org/10.3389/fnhum.2016.00503

  120. Pantazopoulos H., Gamble K., Stork O., Amir S. Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders. Neural Plast. 2018. V. 2018. P. 5892657. https://doi.org/10.1155/2018/5892657

  121. Park Y., Lee K., Park J., Bae J.B., Kim S.-S., Kim D.-W., Woo S.J., Yoo S., Kim K.W. Optimal flickering light stimulation for entraining gamma rhythms in older adults. Sci Rep. 2022. V. 12. P. 15550. https://doi.org/10.1038/S41598-022-19464-2

  122. Passaglia C.L., Troy J.B. Impact of Noise on Retinal Coding of Visual Signals. J. Neurophysiol. 2004. V. 92. P. 1023–1033. https://doi.org/10.1152/jn.01089.2003

  123. Pascual-Leone A., Freitas C., Oberman L., Horvath J.C., Halko M., Eldaief M., Bashir S., Vernet M., Shafi M., Westover B., Vahabzadeh-Hagh A.M., Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011. V. 24. P. 302–315. https://doi.org/10.1007/s10548-011-0196-8

  124. Peng C.-K., Mietus J., Hausdorff J.M., Havlin S., Stanley H.E., Goldberger A.L. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 1993. V. 70. P. 1343–1346. https://doi.org/10.1103/PhysRevLett.70.1343

  125. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511755743

  126. Pino O. A randomized controlled trial (RCT) to explore the effect of audio-visual entrainment among psychological disorders. Acta Biomed. 2022. V. 92 (6). P. e2021408. https://doi.org/10.23750/abm.v92i6.12089

  127. Pogosyan A., Gaynor L.D., Eusebio A., Brown P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol. 2009. V. 19 (19). P. 1637–1641. https://doi.org/10.1016/j.cub.2009.07.074

  128. Polak K., Schmetterer L., Riva C.E. Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest. Ophthalmol. Vis. Sci. 2002. V. 43 (8). P. 2721–2726.

  129. Porcu A., Riddle M., Dulcis D., Welsh D.K. Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plast. 2018. V. 2018. P. 5147585. https://doi.org/10.1155/2018/5147585

  130. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012. V. 32 (4). P. 354–358. https://doi.org/10.1097/WNO.0b013e3182745600

  131. Quirk B.J., Desmet K.D., Henry M. Therapeutic effect of near infrared (NIR) light on Parkinson’s disease models. Front. Biosci. 2012. V. 4. P. 818–823. https://doi.org/10.2741/E421

  132. Rabinovich M.I., Abarbanel H.D. The role of chaos in neural systems. Neuroscience. 1998. V. 87 (1). P. 5–14. https://doi.org/10.1016/s0306-4522(98)00091-8

  133. Rahman S.A., St Hilaire M.A., Chang A.M. Circadian phase resetting by a single short-duration light exposure. JCI Insight. 2017. V. 2 (7). P. e89494. https://doi.org/10.1172/jci.insight.89494

  134. Reichenbach A., Bringmann A. New functions of muller cells. Glia. 2013. V. 61 (5). P. 651–678. https://doi.org/10.1002/glia.22477

  135. Rieke F., Baylor D.A. Origin and functional impact of dark noise in retinal cones. Neuron. 2000. V. 26 (1). P. 181–186. https://doi.org/10.1016/s0896-6273(00)81148-4

  136. Riva C.E., Falsini B., Logean E. Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest. Ophthalmol. Vis. Sci. 2001. V. 42 (3). P. 756–762.

  137. Riva C.E., Logean E., Falsini B. Temporal dynamics and magnitude of the blood flow response at the optic disk in normal subjects during functional retinal flicker-stimulation. Neurosci. Lett. 2004. V. 356 (2). P. 75–78. https://doi.org/10.1016/j.neulet.2003.08.069

  138. Rodriguez E., George N., Lachaux J.P., Martinerie J., Renault B., Varela F.J. Perception’s shadow: long-distance synchronization of human brain activity. Nature. 1999. V. 397 (6718). P. 430–433. https://doi.org/10.1038/17120

  139. Rojas J.C., Lee J., John J.M., Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci. 2008. V. 28. P. 13511–13521. https://doi.org/10.1523/JNEUROSCI.3457-08.2008

  140. Rojas J.C., Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye & Brain. 2011. V. 3. P. 49–67. https://doi.org/10.2147/EB.S21391

  141. Roux F., Wibral M., Mohr H.M., Singer W., Uhlhaas P.J. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J. Neurosci. 2012. V. 32. P. 12411–12420. https://doi.org/10.1523/jneurosci.0421-12.2012

  142. Salansky N., Fedotchev A., Bondar A. Responses of the nervous system to low frequency stimulation and EEG rhythms: clinical implications. Neurosci Biobehav Rev. 1998. V. 22 (3). P. 395–409. https://doi.org/10.1016/s0149-7634(97)00029-8

  143. Sehic A., Guo S., Cho K.-S., Corraya R.M., Chen D.F., Utheim T.P. Electrical stimulation as a means for improving vision. Am J Pathol. 2016. V. 186. № 11. P. 2783–2797. https://doi.org/10.1016/j.ajpath.2016.07.017

  144. Shin Y.W., O’Donnell B.F., Youn S., Kwon J.S. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011. V. 8 (4). P. 288–296. https://doi.org/10.4306/pi.2011.8.4.288

  145. Siebner H.R., Ziemann U. Rippling the cortex with high-frequency (>100 Hz) alternating current stimulation. J. Physiol. 2010. V. 588 (Pt. 24). P. 4851. https://doi.org/10.1113/jphysiol.2010.200857

  146. Siever D., Collura T. Audio–Visual Entrainment: Physiological Mechanisms and Clinical Outcomes. In: Rhythmic Stimulation Procedures in Neuromodulation. Ed. by J.R. Evans and R.R. Turner. Academic Press, 2017. P. 51–95.

  147. Silvestre D., Arleo A., Allard R. Internal noise sources limiting contrast sensitivity. Sci Rep. 2018. V. 8 (1). P. 2596. https://doi.org/10.1038/s41598-018-20619-3

  148. Srinivasan A., Karuppathal E., Venkatesan K.R., Kalpana R. Brainwave Entrainment through External Sensory Stimulus: A Therapy for Insomnia (1784). Neurology. 2020. V. 94 (15).

  149. Storch D., Gaston K.J., Cepák J. Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition. Proc Biol Sci. 2002. V. 269. P. 1791–1796. https://doi.org/10.1098/rspb.2002.2076

  150. Tang H., Vitiello M.V., Perlis M., Mao J.J., Riegel B. A pilot study of audio-visual stimulation as a self-care treatment for insomnia in adults with insomnia and chronic pain. Appl Psychophysiol Biofeedback. 2014. V. 39 (3–4). P. 219–225. https://doi.org/10.1007/s10484-014-9263-8

  151. Tang J., Herda A.A., Kern T.S. Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol. 2014. V. 98. P. 1013–1015. https://doi.org/10.1136/bjophthalmol-2013-304477

  152. Taylor R.P., Spehar B., Donkelaar P.V., Hagerhall C.M. Perceptual and physiological responses to Jackson Pollock’s fractals. Front Hum Neurosci. 2011. V. 5. P. 60. https://doi.org/10.3389/fnhum.2011.00060

  153. Taylor R.P., Spehar B., Wise J.A., Clifford C.W., Newell B.R., Hagerhall C.M., Purcell T., Martin T.P. Perceptual and physiological responses to the visual complexity of fractal patterns. Nonlinear Dynamics Psychol Life Sci. 2005. V. 9. P. 89–114.

  154. Taylor R.P., Sprott J.C. Biophilic fractals and the visual journey of organic Screen-savers. J Non-Linear Dyn Psychol Life Sci. 2008. V. 12. P. 117–129.

  155. Taylor R.P. The Potential of Biophilic Fractal Designs to Promote Health and Performance: A Review of Experiments and Applications. Sustainability. 2021. V. 13. P. 823. https://doi.org/10.3390/su13020823

  156. Teich M.C., Heneghan C., Lowen S.B., Ozaki T., Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A. 1997. V. 14. P. 529–546. https://doi.org/10.1364/josaa.14.000529

  157. Thut G., Veniero D., Romei V., Miniussi C., Schyns P., Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011. V. 21 (14). P. 1176–1185. https://doi.org/10.1016/j.cub.2011.05.049

  158. Traikapi A., Konstantinou N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front. Syst. Neurosci. 2021. V. 15. P. 782399. https://doi.org/10.3389/fnsys.2021.782399

  159. Turrigiano G.G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008. V. 135 (3). P: 422–435. https://doi.org/10.1016/j.cell.2008.10.008

  160. Uhlhaas P.J., Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010. V. 11 (2). P. 100–113. https://doi.org/10.1038/nrn2774

  161. Vasseur D.A., Yodzis P. The color of environmental noise. Ecology. 2004. V. 85(4). P. 1146–1152. https://doi.org/10.1890/02-3122

  162. Verrotti A., Tocco A.M., Salladini C., Latini G., Chiarelli F. Human photosensitivity: from pathophysiology to treatment. Eur J Neurol. 2005. V. 12 (11). P. 828–841. https://doi.org/10.1111/j.1468-1331.2005.01085.x

  163. Von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int. J. Mol. Sci. 2022. V. 23. P. 2778. https://doi.org/10.3390/ijms23052778

  164. Westlake K.P., Hinkley L.B., Bucci M., Guggisberg A.G., Byl N., Findlay A.M., Henry R.G., Nagarajan S.S. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012. V. 237. P. 160–169. https://doi.org/10.1016/j.expneurol.2012.06.020

  165. Wilkins A., Veitch J., Lehman B. LED lighting flicker and potential health concerns: IEEE standard PAR1789 update 2010. IEEE Energy Conversion Congress and Exposition, 2010. P. 171–178. https://doi.org/10.1109/ECCE.2010.5618050

  166. Wilkins A.J., Bonanni P., Porciatti V., Guerrini R. Physiology of human photosensitivity. Epilepsia. 2004. V. 45 (1). P. 7–13. https://doi.org/10.1111/j.0013-9580.2004.451009x

  167. Williams J., Ramaswamy D., Oulhaj A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 2006. V. 7 (5). P. 21. https://doi.org/10.1186/1471-2202-7-21

  168. Williams J.H. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001. V. 104. P. 283–286. https://doi.org/10.1016/s0306-4522(00)00579-0

  169. Yamamoto Y., Hughson R.L. On the fractal nature of heart rate variability in humans: effects of data length and β-adrenergic blockade. Am. J. Physiol. 1994. V. 266. R40–R49. https://doi.org/10.1152/ajpregu.1994.266.1.r40

  170. Yu W.-S., Kwon S.-H., Agadagba S.K., Chan L.-L.-H., Wong K.-H., Lim L.-W. Neuroprotective effects and therapeutic potential of transcorneal electrical stimulation for depression. Cells. 2021. V. 10. P. 2492. https://doi.org/10.3390/cells10092492

  171. Yuvaraj R., Murugappan M. Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients. Cogn. Neurodyn. 2016. V. 10 (3). P. 225. https://doi.org/10.1007/s11571-016-9375-3

  172. Zaehle T., Rach S., Herrmann C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010. V. 5. P. e13766. https://doi.org/10.1371/journal.pone.0013766

  173. Zafar S., Sachdeva M., Frankfort B.J., Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr. Diabetes Rep. 2019. V. 19 (4). P. 17. https://doi.org/10.1007/s11892-019-1134-5

  174. Zeck G. Aberrant activity in degenerated retinas revealed by electrical imaging. Front Cell Neurosci. 2016. V. 10. P. 25. https://doi.org/10.3389/FNCEL.2016.00025

  175. Zhang Y., Wang C., Sun C., Zhang X., Wang Y., Qi H., He F., Zhao X., Wan B., Du J., Ming D. Neural complexity in patients with poststroke depression: A resting EEG study. J Affect Disord. 2015. V. 188. P. 310–318. https://doi.org/10.1016/j.jad.2015.09.017

  176. Zhang Y.S., Guo D., Xu P., Zhang Y., Yao D. Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn. Neurodyn. 2016. V. 10. P. 505–511. https://doi.org/10.1007/s11571-016-9398-9

  177. Zhuang J., Madden D.J., Cunha P., Badea A., Davis S.W., Potter G.G., Lad E.M., Cousins S.W., Chen N.-K., Allen K., Maciejewski A.J., Fernandez X.D., Diaz M.T., Whitson H.E. Cerebral white matter connectivity, cognition, and age-related macular degeneration. NeuroImage: Clinical. 2021. V. 30. P. 102594. https://doi.org/10.1016/j.nicl.2021.102594

  178. Zueva M., Spiridonov I., Semenova N., Tsapenko I., Maglakelidze N., Stadelman J. The LED fractal stimulator and first evidence of its application in electroretinography. Doc. Ophthalmologica. 2017. V. 135 (Suppl 1). P. 35–36. https://doi.org/10.1007/s10633-017-9609-7

  179. Zueva M.V. Dynamic fractal flickering as a tool in research of non- linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl Sci J. 2013. V. 4 (27). P. 462–468. https://doi.org/10.5829/idosi.wasj.2013.27.04.13657

  180. Zueva M.V. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Front Aging Neurosci. 2015. V. 7. P. 135. https://doi.org/10.3389/fnagi.2015.00135

  181. Zueva M.V., Kovalevskaya M.A., Donkareva O.V., Starikova M.A., Karankevitch A.I., Taranov A.A., Antonyan V.B. The impact of complex-structured optical signals on color perception and light sensitivity in patients with suspicion of glaucoma and primary open-angle glaucoma. J Clin Exp Ophthalmol. 2018. V. 9. P. 74. https://doi.org/10.4172/2155-9570-C8-100

Дополнительные материалы отсутствуют.