Известия РАН. Теория и системы управления, 2023, № 3, стр. 133-140

АНАЛИТИЧЕСКИЙ СИНТЕЗ УПРАВЛЕНИЯ ПО ВЫХОДУ БОКОВЫМ ДВИЖЕНИЕМ ВОЗДУШНОГО СУДНА ПРИ ОТСУТСТВИИ ИЗМЕРЕНИЙ УГЛОВ СКОЛЬЖЕНИЯ И КРЕНА

Н. Е. Зубов a*, Е. Ю. Зыбин b, А. В. Лапин ab

a МГТУ им. Н.Э. Баумана
Москва, Россия

b ФАУ “ГосНИИАС”
Москва, Россия

* E-mail: nik.zubov@gmail.com

Поступила в редакцию 26.10.2022
После доработки 01.11.2022
Принята к публикации 05.12.2022

Аннотация

Для линеаризованной модели четвертого порядка, описывающей боковое движение воздушного судна с двумя органами управления, получены аналитические выражения стабилизирующих законов управления при отсутствии измерений углов скольжения и крена. В основу аналитического синтеза положен новый подход решения задачи управления по выходу. В отличие от традиционного подхода Ван дер Воуда с использованием многоуровневой декомпозиции, предлагаемый подход применим к широкому классу систем, у которых суммарная размерность векторов управления и наблюдения не превышает размерность вектора состояния. Представлена компактная формула, определяющая матрицу регулятора по выходу для четырехмерной динамической системы с двумя входами и двумя выходами при условии, что индексы управляемости и наблюдаемости не равны между собой. Приведены результаты моделирования процессов управления на примере стабилизации бокового движения гипотетического воздушного судна.

Список литературы

  1. Зубов Н.Е., Микрин Е.А., Рябченко В.Н., Фомичев А.В. Синтез законов управления боковым движением летательного аппарата при отсутствии информации об угле скольжения. Аналитическое решение // Изв. вузов. Авиационная техника. 2017. № 1. С. 61–70.

  2. Буков В.Н. Адаптивные прогнозирующие системы управления полетом. М.: Наука, 1987.

  3. Зубов Н.Е., Микрин Е.А., Рябченко В.Н., Пролетарский А.В. Аналитический синтез законов управления боковым движением летательного аппарата // Изв. вузов. Авиационная техника. 2015. № 3. С. 14–20.

  4. Зубов Н.Е., Лапин А.В., Рябченко В.Н. Аналитический алгоритм построения орбитальной ориентации космического аппарата при неполном измерении компонент вектора состояния // Изв. РАН. ТиСУ. 2019. № 6. С. 128–138. https://doi.org/10.1134/S0002338819040176

  5. Lapin A.V., Zubov N.E. Autonomous Stabilization of a Spacecraft Orbital Orientation at the Lack of Angular Velocity Measurements // Int. Russian Automation Conf. Sochi. 2022. P. 51–56. https://doi.org/10.1109/RusAutoCon54946.2022.9896299.

  6. Буков В.Н. Вложение систем. Аналитический подход к анализу и синтезу матричных систем. Калуга: Изд-во Н.Ф. Бочкаревой, 2006. 716 с.

  7. Зубов Н.Е., Рябченко В.Н., Лапин А.В. Аналитический синтез законов стабилизации взаимосвязанных движений летательного аппарата в каналах тангаж-рысканье при отсутствии информации об угле атаки // Изв. вузов. Авиационная техника. 2022. № 1. С. 87–96.

  8. Зубов Н.Е., Лапин А.В., Микрин Е.А., Рябченко В.Н. Управление по выходу спектром линейной динамической системы на основе подхода Ван дер Воуда // ДАН. 2017. Т. 476. № 3. С. 260–263.

  9. Lapin A.V., Zubov N.E. Generalization of Bass – Gura Formula for Linear Dynamic Systems with Vector Control // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2020. V. 89. Iss. 2. P. 41–64. https://doi.org/10.18698/1812-3368-2020-2-41-64

  10. Зыбин Е.Ю., Мисриханов М.Ш., Рябченко В.Н. Рекурсивные тесты на управляемость и наблюдаемость больших динамических систем // АиТ. 2006. № 5. С. 119–132.

  11. Скороход Б.А., Колежук В.С. Определение индекса наблюдаемости линейной дискретной системы с векторным выходом // Оптимизация производственных процессов: Сб. науч. тр. 2003. № 6. С. 24–28.

  12. Ким Д.П. Теория автоматического управления. М.: Юрайт, 2020. 276 с.

  13. Гантмахер Ф.Р. Теория матриц. М.: Физматлит, 2010. 560 с.

  14. Лапин А.В., Зубов Н.Е. Реализация в среде MATLAB аналитических алгоритмов модального управления по состоянию и выходу // Инженерный журнал: наука и инновации. 2020. № 1 (97). С. 1–16. https://doi.org/10.18698/2308-6033-2020-1-1950

  15. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). М.: Наука, 1974. 832 с.

  16. Lapin A.V., Zubov N.E. Analytic Solution of the Problem of Stabilizing Orbital Orientation of a Spacecraft with Flywheel Engines // AIP Conf. Proceedings. Moscow. 2021. V. 2318. Iss. 1. 130009. P. 1–8. https://doi.org/10.1063/5.0036155.

  17. Kisacanin B., Agarwal G.C. Linear Control Systems: With Solved Problems and MATLAB Examples. N.Y.: Kluwer Acad. Plenum Publ., 2002.

Дополнительные материалы отсутствуют.