Теплоэнергетика, 2024, № 3, стр. 85-101

Водородаккумулирующие материалы на основе сплавов титана с железом (обзор)

М. В. Лотоцкий ab, М. В. Дэвидс b, В. Н. Фокин a, Э. Э. Фокина a, Б. П. Тарасов acd*

a Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
142432 Московская обл., г. Черноголовка, просп. Академика Семенова, д. 1, Россия

b HySA Systems Centre of Competence, University of the Western Cape, Robert Sobukwe Rd.
7535 Bellville, South Africa

c Национальный исследовательский университет “Высшая школа экономики”
101000 Москва, Мясницкая ул., д. 20, Россия

d Московский государственный университет им. М.В. Ломонова
119991 Москва, Ленинские горы, д. 1, Россия

* E-mail: tarasov@icp.ac.ru

Поступила в редакцию 16.08.2023
После доработки 26.09.2023
Принята к публикации 27.09.2023

Аннотация

Разработка компактных, безопасных и эффективных методов хранения водорода является одной из ключевых проблем водородной энергетики. Используемые в настоящее время технологии хранения водорода в виде сжатого газа или криогенной жидкости требуют значительных капиталовложений и расходов на обслуживание компрессорного и криогенного оборудования, характеризуются высокими энергозатратами, при их реализации необходимы особые меры по обеспечению безопасности, а также применение водородно-нейтральных конструкционных материалов. Перспективным путем решения указанных проблем для среднемасштабных систем хранения является использование металлогидридов, обеспечивающих наиболее простое в исполнении, компактное и безопасное, по сравнению с традиционными методами, хранение водорода. Однако высокая стоимость гидридообразующих материалов сдерживает реализацию данного подхода. Применение сплавов на основе интерметаллида TiFe позволило бы снизить расходы на металлогидридное хранение водорода более чем в 5 раз. Это обстоятельство является причиной растущего интереса специалистов в области водородных энерготехнологий к водород аккумулирующим материалам на основе сплавов титана с железом. Хотя системы водорода с интерметаллидом TiFe и его производными изучаются более 50 лет, в последние годы поиск путей повышения устойчивости их водородсорбционных характеристик к отравлению кислородсодержащими примесями в газовой и твердой фазах приобрел особую актуальность. В настоящей статье приводится обзор исследований и разработок, направленных на получение, исследование свойств и применение сплавов титана с железом с улучшенными водородсорбционными характеристиками. Проведен анализ данных, представленных в научной литературе, сформулированы подходы к разработке высокоэффективных гидридообразующих материалов на базе интерметаллида TiFe и систем хранения водорода на их основе.

Ключевые слова: водородная энергетика, водородное материаловедение, хранение водорода, гидриды металлов, сплавы титана с железом, интерметаллиды, водородсорбционные свойства, металлогидридные технологии

Список литературы

  1. Филиппов С.П., Ярославцев А.Б. Водородная энергетика: перспективы развития и материалы // Успехи химии. 2021. Т. 90. № 6. С. 627–643.

  2. Amirthan T., Perera M.S.A. The role of storage systems in hydrogen economy: A review // J. Nat. Gas Sci. Eng. 2022. V. 108. P. 104843. https://doi.org/10.1016/j.jngse.2022.104843

  3. A state-of-the-art review on the latest trends in hydrogen production, storage, and transportation techniques / F. Qureshi, M. Yusuf, Khan M. Arham, H. Ibrahim, B.C. Ekeoma, H. Kamyab, M.M. Rahman, A.K. Nadda, S. Chelliapan // Fuel. 2023. V. 340. Art. 127574. https://doi.org/10.1016/j.fuel.2023.127574

  4. Morales-Ospino R., Celzard A., Fierro V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage // Renewable Sustainable Energy Rev. 2023. V. 182. Art. 113360. https://doi.org/10.1016/j.rser.2023.113360

  5. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress / J.W. Makepeace, T. He, C. Weidenthaler, T.R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P.E. de Jongh, P. Chen, W.I.F. David // Int. J. Hydrogen Energy. 2019. V. 44. P. 7746–7767. https://doi.org/10.1016/j.ijhydene.2019.01.144

  6. The use of metal hydrides in fuel cell applications / M.V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, V. Yartys // Prog. Nat. Sci.: Mater. Int. 2017. V. 27. No. 1. P. 3–20. https://doi.org/10.1016/j.pnsc.2017.01.008

  7. A review on thermal coupling of metal hydride storage tanks with fuel cells and electrolyzers / S.A. Cetinkaya, T. Disli, G. Soyturk, O. Kizilkan, C.O. Colpan // Energies (Basel). 2023. V. 16. No. 1. Art. 341. https://doi.org/10.3390/en16010341

  8. Lototskyy M.V., Tarasov B.P., Yartys V.A. Gas-phase applications of metal hydrides // J. Energy Storage. 2023. V. 72. Part D. Art. 108165. https://doi.org/10.1016/j.est.2023.108165

  9. Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view // J. Alloys Compd. 1999. V. 293–295. P. 877–888. https://doi.org/10.1016/S0925-8388(99)00384-9

  10. Market Intelligence Platform. [Электрон. ресурс.] https://www.indexbox.io

  11. Yartys V.A., Lototskyy M.V. Laves type intermetallic compounds as hydrogen storage materials: A review // J. Alloys Compd. 2022. V. 916. Art. 165219. https://doi.org/10.1016/j.jallcom.2022.165219

  12. A review on crucibles for induction melting of titanium alloys / S. Fashu, M. Lototskyy, M.W. Davids, L. Pickering, V. Linkov, S. Tai, T. Renheng, X. Fangming, P.V. Fursikov, B.P. Tarasov // Mater. Des. 2020. V. 186. Art. 108295. https://doi.org/10.1016/j.matdes.2019.108295

  13. Modified AB5 type hydrogen storage alloy. Jiangsu JITRI Advanced Energy Materials Research Institute Co., Ltd. 2021. [Электрон. ресурс.] http://www.aemcn.com/en/product/327.html

  14. GfE Alloys: Product Overview. [Электрон. ресурс.] https://www.gfe.com/en/products-and-solutions/alloys/product-overview

  15. Van Vuuren D.S. Titanium – an opportunity and challenge for South Africa // Proc. of the 7th Intern. Heavy Minerals Conf. “What next?”. Johannesburg, South Africa. 20–23 September 2009. https://www.saimm.co. za/Conferences/HMC2009/001-007_vanVuuren.pdf

  16. Davids M.W., Lototskyy M., Pollet B.G. Manufacturing of hydride-forming alloys from mixed titanium – iron oxide // Adv. Mater. Res. 2013. V. 746. P. 14–22. https://doi.org/10.4028/www.scientific.net/AMR.746.14

  17. Davids M.W., Lototskyy M. Influence of oxygen introduced in TiFe-based hydride forming alloy on its morphology, structural and hydrogen sorption properties // Int. J. Hydrogen Energy. 2012. V. 37. No. 23. P. 18155–18162. https://doi.org/10.1016/j.ijhydene.2012.09.106

  18. Sandrock G.D., Goodell P.D. Cyclic life of metal hydrides with impure hydrogen: Overview and engineering considerations // J. Less-Common Met. 1984. V. 104. No. 1. P. 159–173. https://doi.org/10.1016/0022-5088(84)90452-1

  19. Wiswall R.H., Jr., Reilly J.J. Inverse hydrogen isotope effects in some metal hydride systems // Inorg. Chem. 1972. V. 11. No. 7. P. 1691–1696. https://doi.org/10.1021/ic50113a050

  20. Reilly J.J., Wiswall R.H., Jr. Iron titanium hydride: its formation, properties, and application // Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 1973. V. 18. No. 3. P. 53–77.

  21. Reilly J.J., Wiswall R.H., Jr. Formation and properties of iron titanium hydride // Inorg. Chem. 1974. V. 13. No. 1. P. 218–222.

  22. Substitutional effects in TiFe for hydrogen storage: A comprehensive review / E.M. Dematteis, N. Berti, F. Cuevas, M. Latroche, M. Baricco // Mater. Adv. 2021. V. 2. No. 8. P. 2524–2560. https://doi.org/10.1039/D1MA00101A

  23. Research progress of TiFe-based hydrogen storage alloys / Y.-H. Zhang, C. Li, Z.-M. Yuan, Y. Qi, S.‑H. Guo, D.-L. Zhao // J. Iron Steel Res. Int. 2022. V. 29. No. 4. P. 537–551. https://doi.org/10.1007/s42243-022-00756-w

  24. An overview of TiFe alloys for hydrogen storage: Structure, processes, properties, and applications / H. Liu, J. Zhang, P. Sun, C. Zhou, Y. Liu, Z.Z. Fang // J. Energy Storage. 2023. V. 68. Art. 107772. https://doi.org/10.1016/j.est.2023.107772

  25. Murray J.L. Fe-Ti (Iron-Titanium) // Binary Alloy Phase Diagrams / Ed. by T.B. Massalski. 2nd Ohio: ASM International, Materials Park, 1990. V. 2. P. 1783–1786.

  26. Friedrich B. Large-scale production and quality assurance of hydrogen storage (battery) alloys // J. Mater. Eng. Perform. 1994. V. 3. No. 1. P. 37–46. https://doi.org/10.1007/BF02654497

  27. Antonova M.M., Privalov Y.G. Sintering behavior of compacts from a mixture of titanium and iron powders in hydrogen // Soviet Powder Metall. Met. Ceram. 1986. V. 25. No. 4. C. 291–296.

  28. Chemical surface modification for the improvement of the hydrogenation kinetics and poisoning resistance of TiFe / M. Williams, M.V. Lototsky, M.W. Davids, V. Linkov, V.A. Yartys, J.K. Solberg // J. Alloys Compd. 2011. V. 509. No. S2. P. S770–S774. https://doi.org/10.1016/j.jallcom.2010.11.063

  29. Microstructure evolution and properties of Ti–xFe (x = 1%, 5%, 10%, 15%) alloys prepared by vacuum sintering and hydrogen induced phase transformation sintering / Z. Yan, F. Chen, R. Xu, Y. Liu, B. Liu // Rare Met. Mater. Eng. 2020. V. 49. Is. 3. P. 1031–1037.

  30. Novakova A.A., Agladze O.V., Tarasov B.P. Structural transformations during mechanical milling of Fe + TiH2 mixture // Russ. J. Inorg. Chem. 2000. V. 45. No. 8. P. 1288–1292.

  31. Synthesis of TiFe hydrogen absorbing alloys prepared by mechanical alloying and SPS treatment / T. Nobuki, T. Moriya, M. Hatate, J.-C. Crivello, F. Cuevas, J.‑M. Joubert // Metals. 2018. V. 8. No. 4. Art. 264. https://doi.org/10.3390/met8040264

  32. Investigation on gaseous and electrochemical hydrogen storage performances of as-cast and milled Ti1.1Fe0.9Ni0.1 and Ti1.09Mg0.01Fe0.9Ni0.1 alloys / H. Shang, Y. Zhang, Y. Li, Y. Qi, S. Guo, D. Zhao // Int. J. Hydrogen Energy. 2018. V. 43. No. 3. P. 1691–1701. https://doi.org/10.1016/j.ijhydene.2017.11.163

  33. Mechanochemical synthesis and hydrogenation behavior of (TiFe)100 –xNix alloys / V. Zadorozhnyy, E. Berdonosova, C. Gammer, J. Eckert, M. Zadorozhnyy, A. Bazlov, M. Zheleznyi, S. Kaloshkin, S. Klyamkin // J. Alloys Compd. 2019. V. 796. P. 42–46. https://doi.org/10.1016/j.jallcom.2019.04.339

  34. Hydrogen storage behavior of TiFe alloy activated by different methods / F. Guo, K. Namba, H. Miyaoka, A. Jain, T. Ichikawa // Mater. Lett. X. 2021. V. 9. Art. 100061. https://doi.org/10.1016/j.mlblux.2021.100061

  35. Hydrogen storage characteristics of Ti1.04Fe0.7Ni0.1Zr0.1Mn0.1Pr0.06 alloy treated by ball milling / Y. Li, Y. Zhang, H. Shang, J. Gao, W. Zhang, L. Ju // J. Alloys Compd. 2023. V. 930. Art. 167024. https://doi.org/10.1016/j.jallcom.2022.167024

  36. Combustion synthesis of fine TiFe series alloy powder by magnesothermic reduction of ilmenite / Y. Wu, C. Yin, Z. Zou, H. Wei, X. Li // Rare Metals. 2006. V. 25. No. 6. P. 280–283. https://doi.org/10.1016/S1001-0521(07)60089-8

  37. Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption / Y. Kobayashi, S. Yamaoka, S. Yamaguchi, N. Hanada, S. Tada, R. Kikuchi // Int. J. Hydrogen Energy. 2021. V. 46. No. 43. P. 22611–22617. https://doi.org/10.1016/j.ijhydene.2021.04.083

  38. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2–NaCl molten salt / L. Xiong, Y. Hua, C. Xu, J. Li, Y. Li, Q. Zhang, Z. Zhou, Y. Zhang, J. Ru // J. Alloys Compd. 2016. V. 676. P. 383–389. https://doi.org/10.1016/j.jallcom.2016.03.195

  39. Electrolytic reduction of mixed (Fe, Ti) oxide using molten calcium chloride electrolyte / M. Panigrahi, A. Iizuka, E. Shibata, T. Nakamura // J. Alloys Compd. 2013. V. 550. P. 545–552. https://doi.org/10.1016/j.jallcom.2012.09.029

  40. Effect of oxygen on the hydrogen storage properties of TiFe alloys / H. Liu, J. Zhang, P. Sun, C. Zhou, Y. Liu, Z.Z. Fang // J. Energy Storage. 2022. V. 55. Art. 105543. https://doi.org/10.1016/j.est.2022.105543

  41. Reidinger F., Lynch J.F., Reilly J.J. An x-ray diffraction examination of the FeTi-H2 system // J. Phys. F: Met. Phys. 1982. V. 12. P. L49–L55. https://doi.org/10.1088/0305-4608/12/3/007

  42. Кивало Л.И., Антонова М.М., Скороход В.В. Аккумулирование водорода интерметаллидом титан-железо. Киев: ИПМ АН УССР, 1983.

  43. In-situ neutron diffraction during reversible deuterium loading in Ti-rich and Mn-substituted Ti(Fe,Mn)0.90 alloys / E.M. Dematteis, J. Barale, G. Capurso, S. Deledda, M.H. Sørby, F. Cuevas, M. Latroche, M. Baricco // J. Alloys Compd. 2023. V. 935. Art. 168150. https://doi.org/10.1016/j.jallcom.2022.168150

  44. Schäfer W., Will G., Schober T. Neutron and electron diffraction of the FeTi – D(H) – γ-phase // MRS Bull. 1980. V. 15. No. 5. P. 627–634. https://doi.org/10.1016/0025-5408(80)90143-9

  45. Cantrell J.S., Bowman R.C., Jr. Comparison of structures and electronic properties between TiCoHx and TiFeHx // J. Less-Common Met. 1987. V. 130. No. 1. P. 69–78. https://doi.org/10.1016/0022-5088(87)90088-9

  46. Enhancing the hydrogen storage properties of AxBy intermetallic compounds by partial substitution: A short review / A. Lys, J.O. Fadonougbo, M. Faisal, J.-Y. Suh, Y.-S. Lee, J.-H. Shim, J. Park, Y.W. Cho // Hydrogen. 2020. V. 1. P. 38–63. https://doi.org/10.3390/hydrogen1010004

  47. Ulate-Kolitsky E., Tougas B., Huot J. Hydrogenation of TixFe2–x-based alloys with overstoichiometric Ti ratio (x = 1.1, 1.15 and 1.2) // Int. J. Hydrogen Energy. 2021. V. 46. P. 38363–38369. https://doi.org/10.1016/j.ijhydene.2021.09.077

  48. Characterization of microstructure and surface oxide of Ti1.2Fe hydrogen storage alloy / K.B. Park, T.-W. Na, Y.D. Kim, J.-Y. Park, J.-W. Kang, H.-S. Kang, K. Park, H.-K. Park // Int. J. Hydrogen Energy. 2021. V. 46. P. 13082–13087. https://doi.org/10.1016/j.ijhydene.2021.01.105

  49. Фокин В.Н., Фокина Э.Э., Тарасов Б.П. Исследование взаимодействия титана и его сплавов с железом с водородом и аммиаком // Журн. прикладной химии. 2019. Т. 92. № 1. С. 39–48. https://doi.org/10.1134/S0044461819010055

  50. An integrated computational and experimental method for predicting hydrogen plateau pressures of TiFe1 ‒ xM-x-based room temperature hydrides / J.O. Fadonougbo, K.B. Park, T.-W. Na, C.-S. Park, H.-K. Park, W.-S. Ko // Int. J. Hydrogen Energy. 2022. V. 47. P. 17673–17682. https://doi.org/10.1016/j.ijhydene.2022.03.240

  51. Nagai H., Kitagaki K., Shoji K. Microstructure and hydriding characteristics of FeTi alloys containing manganese // J. Less-Common Met. 1987. V. 134. P. 275–286. https://doi.org/10.1016/0022-5088(87)90567-4

  52. Modi P., Aguey-Zinsou K.-F. Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation // Int. J. Hydrogen Energy. 2019. V. 44. No. 31. P. 16757–16764. https://doi.org/10.1016/j.ijhydene.2019.05.005

  53. Tailoring the activation behaviour and oxide resistant properties of TiFe alloys by doping with Mn / S. Pati, S. Trimbake, M. Vashistha, P. Sharma // Int. J. Hydrogen Energy. 2021. V. 46. No. 70. P. 34830–34838. https://doi.org/10.1016/j.ijhydene.2021.08.041

  54. Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn / E.M. Dematteis, D.M. Dreistadt, G. Capurso, J. Jepsen, F. Cuevas, M. Latroche // J. Alloys Compd. 2021. V. 874. Art. 159925. https://doi.org/10.1016/j.jallcom.2021.159925

  55. Experimental investigation and thermodynamic modeling of the ternary Ti–Fe–Mn system for hydrogen storage applications / W. Zheng, W. Song, T. Wu, J. Wang, Y. He, X.-G. Lu // J. Alloys Compd. 2021. V. 891. Art. 161957. https://doi.org/10.1016/j.jallcom.2021.161957

  56. Калориметрическое исследование систем TiFe–H2 и Ti0.96Fe0.94V0.1–H2 / В.Н. Вербецкий, Р.А. Сиротина, А.П. Савченкова, М.А. Серкова // Изв. АН СССР. Металлы. 1988. № 4. С. 208–211.

  57. Hydrogen sorption peculiarities in FeTi-type Ti–Fe–V–Mn alloys / S.V. Mitrokhin, V.N. Verbetsky, R.R. Kajumov, C. Hong, Y. Zhang // J. Alloys Compd. 1993. V. 199. P. 155–160.

  58. Guéguen A., Latroche M. Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Mn0.1Vx (x = 0, 0.05 and 0.1) // J. Alloys Compd. 2011. V. 509. No. 18. P. 5562–5566. https://doi.org/10.1016/j.jallcom.2011.02.036

  59. Tailoring the equilibrium hydrogen pressure of TiFe via vanadium substitution / J.Y. Jung, Y.-S. Lee, J.‑Y. Suh, J.-Y. Huh, Y.W. Cho // J. Alloys Compd. 2021. V. 854. Art. 157263. https://doi.org/10.1016/j.jallcom.2020.157263

  60. Microstructures and hydrogenation properties of TiFel –xMx alloys / S.-M. Lee, T.-P. Perng, H.‑K. Juang, S.-Y. Chen, W.-Y. Chen, S.-E. Hsu // J. Alloys Compd. 1992. V. 187. No. 1. P. 49–57.

  61. Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy / T. Yang, P. Wang, C. Xia, N. Liu, C. Liang, F. Yin, Q. Li // Int. J. Hydrogen Energy. 2020. V. 45. No. 21. P. 12071–12081. https://doi.org/10.1016/j.ijhydene.2020.02.086

  62. On the first hydrogenation kinetics and mechanisms of a TiFe0.85Cr0.15 alloy produced by gas atomization / K.B. Park, J.O. Fadonougbo, T.-W. Na, T.W. Lee, M. Kim, D.H. Lee, H.G. Kwon, C.-S. Park, Y.D. Kim, H.-K. Park // Mater. Charact. 2022. V. 192. Art. 112188. https://doi.org/10.1016/j.matchar.2022.112188

  63. Influence of substitutional impurities on hydrogen diffusion in B2-TiFe alloy / A.V. Bakulin, S.S. Kulkov, S.E. Kulkova, S. Hocker, S. Schmauder // Int. J. Hydrogen Energy. 2014. V. 39. No. 23. P. 12213–12220. https://doi.org/10.1016/j.ijhydene.2014.05.188

  64. A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics – behind substitution of iron by nickel / K.D. Ćirić, A. Kocjan, A. Gradišek, V.J. Koteski, A.M. Kalijadis, V.N. Ivanovski, Z.V. Laušević, D.L. Stojić // Int. J. Hydrogen Energy. 2012. V. 37. P. 8408–8417. https://doi.org/10.1016/j.ijhydene.2012.02.047

  65. Effects of Co introduction on hydrogen storage properties of Ti–Fe–Mn alloys / H. Qu, J. Du, C. Pu, Y. Niu, T. Huang, Z. Li, Y. Lou, Z. Wu // Int. J. Hydrogen Energy. 2015. V. 40. P. 2729–2735. https://doi.org/10.1016/j.ijhydene.2014.12.089

  66. Lv P., Huot J. Hydrogen storage properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 alloys // Int. J. Hydrogen Energy. 2016. V. 41. P. 22128–22133. https://doi.org/10.1016/j.ijhydene.2016.07.091

  67. Patel A.K., Sharma P., Huot J. Effect of annealing on microstructure and hydrogenation properties of TiFe + + X wt % Zr (X = 4, 8) // Int. J. Hydrogen Energy. 2018. V. 43. P. 6238–6243. https://doi.org/10.1016/j.ijhydene.2018.02.029

  68. Lv P., Liu Z., Dixit V. Improved hydrogen storage properties of TiFe alloy by doping (Zr + 2V) additive and using mechanical deformation // Int. J. Hydrogen Energy. 2019. V. 44. P. 27843–27852. https://doi.org/10.1016/j.ijhydene.2019.08.249

  69. Effect of hafnium addition on the hydrogenation proc-ess of TiFe alloy / V. Razafindramanana, S. Gorsse, J. Huot, J.L. Bobet // Energies. 2019. V. 12. Art. 3477.

  70. Microstructure and first hydrogenation properties of TiFe alloy with Zr and Mn as additives / A.K. Patel, A. Duguay, B. Tougas, C. Schade, P. Sharma, J. Huot // Int. J. Hydrogen Energy. 2020. V. 45. P. 787–797. https://doi.org/10.1016/j.ijhydene.2019.10.239

  71. The influence of refractory metals on the hydrogen storage characteristics of FeTi-based alloys prepared by suspended droplet alloying / P. Kuziora, I. Kunce, S. McCain, N.J.E. Adkins, M. Polański // Int. J. Hydrogen Energy. 2020. V. 45. P. 21635–21645. https://doi.org/10.1016/j.ijhydene.2020.05.216

  72. Effect of cobalt on the microstructure and hydrogen sorption performances of TiFe0.8Mn0.2 alloy / H. Leng, Z. Yu, Q. Luo, J. Yin, N. Miao, Q. Li, K.-C. Chou // Int. J. Hydrogen Energy. 2020. V. 45. P. 19553–19560. https://doi.org/10.1016/j.ijhydene.2020.05.130

  73. Manna J., Tougas B., Huot J. First hydrogenation kinetics of Zr and Mn doped TiFe alloy after air exposure and reactivation by mechanical treatment // Int. J. Hydrogen Energy. 2020. V. 45. P. 11625–11631. https://doi.org/10.1016/j.ijhydene.2020.02.043

  74. Hydrogen storage behavior and microstructural feature of a TiFe–ZrCr2 alloy / T. Ha, S.-I. Lee, J. Hong, Y.‑S. Lee, D.-I. Kim, J.-Y. Suh, Y.W. Cho, B. Hwang, J. Lee, J.-H. Shim // J. Alloys Compd. 2021. V. 853. Art. 157099. https://doi.org/10.1016/j.jallcom.2020.157099

  75. Effect of regulating the different proportions of Zr to Mn elements on the hydrogen storage properties of titanium–iron–manganese–hydrogen storage alloys / P. Lv, C. Peng, Q. Liu, C. Zhong, D. Huang, Z. Liu, Q. Zhou, R. Zhao // RSC Advances. 2023. V. 13. P. 10157–10167. https://doi.org/10.1039/D3RA01131C

  76. Su L., Liu F., Bao D. An advanced TiFe series hydrogen storage material with high hydrogen capacity and easily activated properties // Int. J. Hydrogen Energy. 1990. V. 15. No. 4. P. 259–262. https://doi.org/10.1016/0360-3199(90)90045-Z

  77. Hydrogen storage properties of FeTi1.3 + x wt % Mm (x = 0.0, 1.5, 3.0, 4.5, 6.0) hydrogen storage alloys / J. Ma, H. Pan, X. Wang, C. Chen, Q. Wang // Int. J. Hydrogen Energy. 2000. V. 25. P. 779–782. https://doi.org/10.1016/S0360-3199(99)00100-7

  78. Hydrogen storage properties of TixFe + y wt % La and its use in metal hydride hydrogen compressor / X. Wang, R. Chen, C. Chen, Q. Wang // J. Alloys Compd. 2006. V. 425. P. 291–295. https://doi.org/10.1016/j.jallcom.2006.01.025

  79. Hydrogenation properties of Ti–Fe–Mn alloy with Cu and Y as additives / W. Ali, M. Li, P. Gao, C. Wu, Q. Li, X. Lu, C. Li // Int. J. Hydrogen Energy. 2017. V. 42. P. 2229–2238. https://doi.org/10.1016/j.jallcom.2006.01.025

  80. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1 –xCux / W. Ali, Z. Hao, Z. Li, G. Chen, Z. Wu, X. Lu, C. Li // Int. J. Hydrogen Energy. 2017. V. 42. P. 16620–16631. https://doi.org/10.1016/j.ijhydene.2017.04.247

  81. Gosselin C., Huot J. First hydrogenation enhancement in TiFe alloys for hydrogen storage doped with yttrium // Metals. 2019. V. 9. Art. 242. https://doi.org/10.3390/met9020242

  82. Influences of La addition on the hydrogen storage performances of TiFe-base alloy / T. Zhai, Z. Wei, Z. Yuan, Z. Han, D. Feng, Wang Haiyan, Y. Zhang // J. Phys. Chem. Solids. 2021. V. 157. Art. 110176. https://doi.org/10.1016/j.jpcs.2021.110176

  83. Improvement of hydrogen absorption and desorption properties of TiFe-based alloys by adding yttrium / C. Li, Y. Lan, X. Wei, W. Zhang, B. Liu, X. Gao, Z. Yuan // J. Alloys Compd. 2022. V. 927. Art. 166992. https://doi.org/10.1016/j.jallcom.2022.166992

  84. Effect of yttrium content on microstructure and hydrogen storage properties of TiFe-based alloy / Z. Han, Z. Yuan, T. Zhai, D. Feng, H. Sun, Y. Zhang // Int. J. Hydrogen Energy. 2023. V. 48. P. 676–695. https://doi.org/10.1016/j.ijhydene.2022.09.227

  85. Sandrock G.D., Goodell P.D. Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, CO and H2O // J. Less-Common Met. 1980. V. 73. P. 161–168. https://doi.org/10.1016/0022-5088(80)90355-0

  86. Hydrogen storage in FeTi: surface segregation and its catalytic effect on hydrogenation and structural studies by means of neutron diffraction / G. Busch, L. Schlapbach, F. Stucki, P. Fischer, A.F. Andresen // Int. J. Hydrogen Energy. 1979. V. 4. P. 29–39. https://doi.org/10.1016/0360-3199(79)90127-7

  87. Łodziana Z. Surface properties of LaNi5 and TiFe – future opportunities of theoretical research in hydrides // Front. Energy Res. 2021. V. 9. Art. 719375. https://doi.org/10.3389/fenrg.2021.719375

  88. Okseniuk I., Shevchenko D. SIMS studies of hydrogen interaction with the TiFe alloy surface: Hydrogen influence on secondary ion yields // Surf. Sci. 2022. V. 716. Art. 121963. https://doi.org/10.1016/j.susc.2021.121963

  89. Hydrogen adsorption studies of TiFe surfaces via 3d transition metal substitution / V. Kumar, P. Kumar, K. Takahashi, P. Sharma // Int. J. Hydrogen Energy. 2022. V. 47. No. 36. P. 16156–16164. https://doi.org/10.1016/j.ijhydene.2022.03.138

  90. Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification / M.V. Lototsky, M. Williams, V.A. Yartys, Y.V. Klochko, V.M. Linkov // J. Alloys Compd. 2011. V. 509. No. S2. P. S555–S561. https://doi.org/10.1016/j.jallcom.2010.09.206

  91. Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium / M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, Y. Klochko // Int. J. Hydrogen Energy. 2011. V. 36. No/ 16. P. 9743–9750. https://doi.org/10.1016/j.ijhydene.2011.05.036

  92. Advances in activation property of hydrogen storage for TiFe-based alloy / D. Zhao, Z. Han, T. Zhai, Z. Yuan, Y. Qi, Y. Zhang // Chin. J. Rare Met. 2020. V. 44. No. 4. P. 337–351.

  93. Hydrogenation characteristics of TiFe1–xPdx (0.05 ≤ ≤ x ≤ 0.30) alloys / I. Yamashita, H. Tanaka, H. Takeshita, N. Kuriyama, T. Sakai, I. Uehara // J. Alloys Comp-d. 1997. V. 253–254. P. 238–240. https://doi.org/10.1016/S0925-8388(96)02925-8

  94. Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling / L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz // J. Alloys Compd. 1995. V. 227. P. 53–57. https://doi.org/10.1016/0925-8388(95)01623-6

  95. Pat. US 2011/0009656 A1. Method of surface modification of metallic hydride forming materials / M. Williams, M.V. Lototsky, A.N. Nechaev, V.M. Linkov. 13.01.2011. https://www.freepatentsonline.com/y2011/ 0009656.html

  96. Effect of nickel alloying by using ball milling on the hydrogen absorption properties of TiFe / M. Bououdina, D. Fruchart, S. Jacquet, L. Pontonnier, J.L. Soubeyroux // Int. J. Hydrogen Energy. 1999. V. 24. P. 885–890. https://doi.org/10.1016/S0360-3199(98)00163-3

  97. Composite materials with 2D graphene structures: applications for hydrogen energetics and catalysis with hydrogen participation / B.P. Tarasov, A.A. Arbuzov, S.A. Mozhzhuhin, A.A. Volodin, P.V. Fursikov // J. Struct. Chem. 2018. V. 59. No. 4. P. 830–838. https://doi.org/10.1134/S0022476618040121

  98. Hydrogen storage behavior of magnesium catalyzed by nickel-graphene nanocomposites / B.P. Tarasov, A.A. Arbuzov, S.A. Mozhzhuhin, A.A. Volodin, P.V. Fursikov, M.V. Lototskyy, V.A. Yartys // Int. J. Hydrogen Energy. 2019. V. 44. P. 29212–29223. https://doi.org/10.1016/j.ijhydene.2019.02.033

  99. Arbuzov A.A., Volodin A.A., Tarasov B.P. Catalytic synthesis and study of carbon–graphene structures // Russ. J. Phys. Chem. A. 2020. V. 94. No. 5. P. 984–989. https://doi.org/10.1134/S0036024420050039

  100. Metal hydride – graphene composites for hydrogen based energy storage / B.P. Tarasov, A.A. Arbuzov, A.A. Volodin, P.V. Fursikov, S.A. Mozhzhuhin, M.V. Lototskyy, V.A. Yartys // J. Alloys Compd. 2021. V. 896. Art. 162881. https://doi.org/10.1016/j.jallcom.2021.162881

  101. Lee S.-M., Perng T.-P. Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe // Int. J. Hydrogen Energy. 2000. V. 25. P. 831–836. https://doi.org/10.1016/S0360-3199(99)00107-X

  102. Mintz M.H., Hadari Z., Dariel M.P. Hydrogenation of oxygen-stabilized Ti2MOx (M = Fe, Co, Ni; 0 ≤ x < 0.5) compounds // J. Less-Common Met. 1980. V. 74. P. 287–294. https://doi.org/10.1016/0022-5088(80)90164-2

  103. Study of hydrogen storage properties of oxygen modified Ti-based AB2 type metal hydride alloy / M.W. Davids, T. Martin, M. Lototskyy, R. Denys, V. Yartys // Int. J. Hydrogen Energy. 2021. V. 46. P. 13658–13663. https://doi.org/10.1016/j.ijhydene.2020.05.215

  104. Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere / L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, W.J. Botta // Int. J. Hydrogen Energy. 2018. V. 43. No. 5. P. 2913–2918. https://doi.org/10.1016/j.ijhydene.2017.12.054

  105. An alternative route to produce easily activated nanocrystalline TiFe powder / R.B. Falcão, E.D.C.C. Dammann, C.J. Rocha, M. Durazzo, R.U. Ichikawa, L.G. Martinez, W.J. Botta, R.M. Leal Neto // Int. J. Hydrogen Energy. 2018. V. 43. No. 33. P. 16107–16116. https://doi.org/10.1016/j.ijhydene.2018.07.027

  106. Outstanding shortening of the activation process stage for a TiFe-based hydrogen storage alloy / A. Zeaiter, P. Nardin, M.A. Pour Yazdi, A. Billard // MRS Bulletin. 2019. V. 112. P. 132–141. https://doi.org/10.1016/j.materresbull.2018.12.015

  107. Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of TiFe + + 4 wt % Zr alloy / P. Lv, M.N. Guzik, S. Sartori, J. Huot // J. Mater. Res. Technol. 2019. V. 8. No. 2. P. 1828–1834. https://doi.org/10.1016/j.jmrt.2018.12.013

  108. Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen / L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, W.J. Botta // Int. J. Hydrogen Energy. 2020. V. 45. No. 3. P. 2084–2093. https://doi.org/10.1016/j.ijhydene.2019.11.035

  109. Synthesis of nanostructured TiFe hydrogen storage material by mechanical alloying via high-pressure torsion / E.I.L. Gómez, K. Edalati, F.J. Antiqueira, D.D. Coimbrão, G. Zepon, D.R. Leiva, T.T. Ishikawa, J.M. Cubero-Sesin, W.J. Botta // Adv. Eng. Mater. 2020. V. 22. No. 10. Art. 2000011. https://doi.org/10.1002/adem.202000011

  110. TiFe0.85Mn0.05 alloy produced at industrial level for a hydrogen storage plant / J. Barale, E.M. Dematteis, G. Capurso, B. Neuman, S. Deledda, P. Rizzi, F. Cuevas, M. Baricco // Int. J. Hydrogen Energy. 2022. V. 47. No. 69. P. 29866–29880. https://doi.org/10.1016/j.ijhydene.2022.06.295

  111. An effective activation method for industrially produced TiFeMn powder for hydrogen storage / D.M. Dreistadt, T.-T. Le, G. Capurso, J.M. Bellosta von Colbe, A. Santhosh, C. Pistidda, N. Scharnagl, H. Ovri, C. Milanese, P. Jerabek, T. Klassen, J. Jepsen // J. Alloys Compd. 2022. V. 919. Art. 165847. https://doi.org/10.1016/j.jallcom.2022.165847

Дополнительные материалы отсутствуют.