Журнал вычислительной математики и математической физики, 2023, T. 63, № 12, стр. 1942-1959

Численный анализ течения разреженного газа через систему коротких каналов

И. В. Воронич 1*, В. А. Титарев 1**

1 ФИЦ ИУ РАН
119333 Москва, ул. Вавилова, 40, Россия

* E-mail: i.voronich@frccsc.ru
** E-mail: vladimir.titarev@frccsc.ru

Поступила в редакцию 17.05.2023
После доработки 26.06.2023
Принята к публикации 22.08.2023

Аннотация

На основе S-модельного кинетического уравнения рассматривается задача о перетекании разреженного газа из резервуара высокого давления в резервуар низкого давления через плоскую мембрану с конечным числом пор. Кинетическое уравнение решается численно неявным консервативным методом второго порядка точности, реализованным в собственном расчетном коде Несветай. Для переходных и континуальных режимов получены численные решения уравнений Навье–Стокса сжимаемой среды. Изучается зависимость от числа Кнудсена (${\text{Kn}}$) расхода газа через систему пор и действующие на стержни мембраны силы при отношении давлений в резервуарах $2:1$. Описаны особенности поля течения вблизи мембраны и на удалении от нее. Библ. 49. Фиг. 13. Табл. 3.

Ключевые слова: мембрана, канал, кинетическое уравнение, S-модель, разреженный газ, вычислительная аэродинамика, неструктурированная сетка, параллельные вычисления.

Список литературы

  1. Sharipov F., Seleznev V. Data on internal rarefied gas flows // J. Phys. Chem. Ref. Data. 1997. V. 27. № 3. P. 657–706.

  2. Sharipov F., Seleznev V. Flows of rarefied gases in channels and microchannels. Russian Academy of Science, Ural Branch, Institute of Thermal Physics, 2008. in Russian.

  3. Titarev V.A., Shakhov E.M. Nonisothermal gas flow in a long channel analyzed on the basis of the kinetic S‑model // Comput. Math. and Math. Phys. 2010. V. 50. № 12. P. 2131–2144.

  4. Pantazis S., Valougeorgis D. Rarefied gas flow through a cylindrical tube due to a small pressure difference // Eu-rop. J. Mech. / B Fluids. 2013. V. 38. P. 114–127.

  5. Valougeorgis D., Vasileiadis N., Titarev V. Validity range of linear kinetic modeling in rarefied pressure driven single gas flows through circular capillaries // Europ. J. Mech. / B Fluids, Special Issue on Non-equilibrium Gas Flows. 2017. V. 64. P. 2–7.

  6. Varoutis S., Valougeorgis D., Sharipov F. Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios // J. Vac. Sci. Technol. A. 2009. V. 27. № 6. P. 1377–1391.

  7. Aristov V.V., Frolova A.A., Zabelok S.A., Arslanbekov R.R., Kolobov V.I. Simulations of pressure-driven flows through channels and pipes with unified flow solver // Vacuum, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications”. 2012. V. 86. № 11. P. 1717–1724.

  8. Varoutis S., Day C., Sharipov F. Rarefied gas flow through channels of finite length at various pressure ratios // Vacuum. 2012. V. 86. № 12. P. 1952–1959.

  9. Titarev V.A., Shakhov E.M. Computational study of a rarefied gas flow through a long circular pipe into vacuum // Vacuum, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications”. 2012. V. 86. № 11. P. 1709–1716.

  10. Shoev G.V., Bondar Y.A., Khotyanovsky D.V., Kudryavtsev A.N., Ivanov M.S., Maruta K. Numerical study of shock wave entry and propagation in a microchannel // Thermophys. Aeromech. 2012. V. 19. № 1. P. 17–32.

  11. Titarev V.A. Rarefied gas flow in a circular pipe of finite length // Vacuum. 2013. V. 94. P. 92–103.

  12. Titarev V.A., Shakhov E.M. Rarefied gas flow into vacuum through a pipe composed of two circular sections of different radii // Vacuum. SI “Advances in Vacuum Gas Dynamics”. 2014. V. 109. P. 236–245.

  13. Dou H., Xu Mi, Wang B., Zhang Z., Wen G., Zheng Y., Luo D., Zhao L., Yu A, Zhang L., Jiang Z., Chen Z. Microporous framework membranes for precise molecule/ion separations // Chemic. Soc. Rev. 2021. V. 50. P. 986–1029.

  14. Taassob A., Bordbar A., Kheirandish S., Zarnaghsh A., Kamali R., Rana A.S. A review of rarefied gas flow in irregular micro/nanochannels // J. Micromechan. and Microengineer. 2021. V. 31. P. 113002.

  15. Wu L., Ho M., Germanou L., Gu X., Liu C., Xu K., Zhang Y. On the apparent permeability of porous media in rarefied gas flows // J. Fluid Mech. 2017. V. 822. P. 398–417.

  16. Popov S.P., Tcheremissine F.G. Subsonic rarefied gas flow over a rack of flat transverse plates // J. Appl. Mech. and Tech. Phys. 2008. V. 49. № 1. P. 46–52.

  17. Plotnikov M.Yu. Hydrogen dissociation in rarefied gas flow through a wire obstacle // J. Appl. Mech. and Tech. Phys. 2018. V. 59. № 5. P. 794–800.

  18. Shakhov E.M. Approximate kinetic equations in rarefied gas theory // Fluid Dynamic. 1968. V. 3. № 1. P. 112–115.

  19. Shakhov E.M. Generalization of the Krook kinetic relaxation equation // Fluid Dynamic. 1968. V. 3. № 5. P. 95–96.

  20. Titarev V.A. Computer package Nesvetay-3D for modelling three-dimensional flows of monatomic rarefied gases // Science & Education. Scientifical periodic of the Bauman MSTU. 2014. № 6. P. 124–154.

  21. Konopel’ko N.A., Titarev V.A., Shakhov E.M. Unsteady rarefied gas flow in a microchannel driven by a pressure difference // Comput. Math. and Math. Phys. 2016. V. 56. № 3. P. 470–482.

  22. Titarev V.A. Implicit numerical method for computing three-dimensional rarefied gas flows using unstructured meshes // Comput. Math. and Math. Phys. 2010. V. 50. № 10. P. 1719–1733.

  23. Titarev V.A. Application of model kinetic equations to hypersonic rarefied gas flows // Computers and Fluids, Special issue “Nonlinear flow and transport”. 2018. V. 169. P. 62–70.

  24. Titarev V.A. Application of the Nesvetay node for solving three-dimensional high-altitude aerodynamics problems // Comput. Math. and Math. Phys. 2020. V. 60. № 4. P. 737–748.

  25. Titarev V.A., Morozov A.A. Arbitrary Lagrangian-Eulerian discrete velocity method with application to laser-induced plume expansion // Appl. Math. and Comput. 2022. V. 429. P. 127241.

  26. Колган В.П. Применение принципа минимальных значений производной к построению конечно-разностных схем для расчета разрывных течений газовой динамики // Уч. зап. ЦАГИ. 1972. Т. 3. № 6. С. 68–77.

  27. Kolgan V.P. Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics // J. Comput. Phys. 2011. V. 230. № 7. P. 2384–2390.

  28. van Leer B. Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’s method // J. Comput. Phys. 1979. V. 32. P. 101–136.

  29. Titarev V.A. Conservative numerical methods for model kinetic equations // Computers and Fluids. 2007. V. 36. № 9. P. 1446 – 1459.

  30. Bhatnagar P.L., Gross E.P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems // Phys. Rev. 1954. V. 94. № 511. P. 1144–1161.

  31. Mieussens L. Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries // J. Comput. Phys. 2002. V. 162. № 2. P. 429–466.

  32. Gusarov A.V., Smurov I. Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer // Phys. Fluids. 2002. V. 14. № 12. P. 4242–4255.

  33. Yoon S., Jameson A. Lower-upper symmetric-gauss-seidel method for the Euler and Navier Stokes equations // AIAA J. 1988. V. 26. № 9. P. 1025–1026.

  34. Men’shov I.S., Nakamura Y. An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium // A Collection of Technical Papers of 6th Int. Symp. on CFD. V. 2. P. 815. Lake Tahoe, Nevada, 1995.

  35. Titarev V.A., Dumbser M., Utyuzhnikov S.V. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions // J. Comput. Phys. 2014. V. 256. P. 17–33.

  36. Titarev V.A., Utyuzhnikov S.V., Chikitkin A.V. OpenMP + MPI parallel implementation of a numerical method for solving a kinetic equation // Comput. Math. and Math. Phys. 2016. V. 56. № 11. P. 1919–1928.

  37. Gorobets A.V. Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations // Lobachevskii J. Math. 2018. V. 39. № 4. P. 524–532.

  38. Gorobets A.V., Duben A.P. Technology for supercomputer simulation of turbulent flows in the good new days of exascale computing // Supercomputing Frontiers and Innovation. 2021. V. 8. № 4. P. 4–10.

  39. Alvarez-Farre X., Gorobets A., Trias F.X. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers // Comput. and Fluid. 2021. V. 214. P. 104768.

  40. Titarev V.A., Utyuzhnikov S.V., Shakhov E.M. Rarefied gas flow through a pipe of variable square cross section into vacuum // Comput. Math. and Math. Phys. 2013. V. 53. № 8. P. 1221–1230.

  41. Titarev V.A., Shakhov E.M. Unsteady rarefied gas flow with shock wave in a channe // Fluid Dynamic. 2018. V. 53. № 1. P. 143–151.

  42. Titarev V.A., Frolova A.A., Rykov V.A., Vashchenkov P.V., Shevyrin A.A., Bondar Ye.A. Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics // J. Comput. Appl. Math. 2020. V. 364. P. 1–12.

  43. Titarev V.A., Shakhov E.M. A hybrid method for the computation of a rarefied gas jet efflux through a very long channel into vacuum // Comput. Math. and Math. Phys. 2020. V. 60. № 11. P. 1936–1949.

  44. Ansys CFX – Solver Theory Guide. Release 2021R2. Ansys, Inc. 2021.

  45. Barth T., Jespersen D.C. The design and application of upwind schemes on unstructured meshes // AIAA paper 89-0366. 1989.

  46. Rao S.S. The Finite Element Method in Engineering. 6th ed. Elsevier, 2018.

  47. Ansys ICEM CFD Help Manual, version 2021 R2. 2021.

  48. Frolova A.A. Analysis of the boundary conditions for rarefied molecular gases with partial accommodation coefficients and energy exchange // Comput. Math. and Math. Phys. 2021. V. 61. № 10. P. 1672–1681.

  49. Koshamarov Yu.A., Ryzhov Yu.A. Applied Rarefied Gas Dynamics. Moscow, Mashinostroenie, 1977. in Russian.

Дополнительные материалы отсутствуют.