Зоологический журнал, 2023, T. 102, № 8, стр. 950-960

Сравнительный анализ разнообразия аллелей гена DRB1 главного комплекса гистосовместимости у двух видов хомячков рода Allocricetulus Argyropulo 1932

И. Г. Мещерский a*, Н. Ю. Феоктистова a**, А. В. Гуреева a***, А. В. Суров a****

a Институт проблем экологии и эволюции имени А.Н. Северцова РАН
119071 Москва, Россия

* E-mail: meschersky@rambler.ru
** E-mail: Feoktistovanyu@gmail.com
*** E-mail: anngureeva@gmail.com
**** E-mail: surov@sevin.ru

Поступила в редакцию 12.02.2023
После доработки 09.05.2023
Принята к публикации 16.06.2023

Аннотация

Методом NGS секвенирования впервые определено аллельное разнообразие экзона 2 гена DRB1 (класс II главного комплекса гистосовместимости – MHC) в естественных популяциях двух видов хомячков рода Allocricetulus: хомячка Эверсманна (A. eversmanni) и монгольского (A. curtatus). Эти виды близки генетически, но распространены аллопатрично и демонстрируют разную биотопическую приуроченность. Хомячок Эверсманна населяет степи и часто связан с агроценозами. Монгольский хомячок обитает в полупустынях и пустынях, где антропогенный пресс практически отсутствует. Анализ выявил достоверное влияние положительного отбора на разнообразие аллелей гена DRB1 у обоих исследованных видов. Однако хомячок Эверсманна отличается большей средней дистанцией между аллелями, но меньшей долей гетерозиготных особей, в то время как монгольской хомячок характеризуется бо́льшим индивидуальным разнообразием аллелей. Таким образом, несмотря на обширный ареал у хомячка Эверсманна, мы наблюдаем значительно меньшее функциональное разнообразие адаптивных генов, что может быть связано с повышенным антропогенным влиянием.

Ключевые слова: монгольский хомячок, хомячок Эверсманна, MHC класс II, таргетное секвенирование, генетическое разнообразие, патогенная нагрузка, естественный отбор

Список литературы

  1. Воронцов Н.Н., 1960. Виды хомяков Палеарктики in statu nascendi // Доклады АН СССР. Т. 132. № 6. С. 1448–1451.

  2. Гуреева А.В., 2022. Филогеография и систематика рода Allocricetulus (Rodentia, Cricetinae). Автореф. … дис. канд. биол. наук. М.: Институт проблем экологии и эволюции им. А.Н. Северцова РАН. 27 с.

  3. Карасёва Е.В., 1961. Влияние распашки целины на образ жизни и территориальное распределение мышевидных грызунов в Северном Казахстане // Зоологический журнал. Т. 40. № 5. С. 768–773.

  4. Красная книга Курганской области, 2012. Под ред. В.Н. Большакова и др. Курган: Изд-во Курганского гос. ун-та. 448 с.

  5. Красная книга Республики Тыва (животные, растения и грибы), 2019. Отв. ред. С.О. Ондар, Д.Н. Шауло. Изд. 2-е. Воронеж. 560 с.

  6. Красная книга Тюменской области: Животные, растения, грибы, 2020. Отв. ред. О.А. Петрова. Изд. 2-е. Кемерово: ООО “ТЕХНОПРИНТ”. 460 с.

  7. Красная книга Ульяновской области, 2015. Под науч. ред. Е.А. Артемьевой, А.В. Масленникова, М.В. Корепова. М.: Изд-во Буки Веди. 550 с.

  8. Красная книга Челябинской области: Животные, растения, грибы, 2017. Отв. ред. А.В. Лагунов. 2-е изд. М.: Реарт. 504 с.

  9. Павлинов И.Я., 2006. Систематика современных млекопитающих. М.: Изд-во МГУ. 287 с.

  10. Пантелеев П.А., 1998. Грызуны Палеарктики: состав и ареалы. М.: Наука. 117 с.

  11. Скалон Н.В., Гагина Т.В., 2004. Спасать ли краснощекого суслика в Кузнецкой степи? // Степной бюллетень. № 15. С. 42–46.

  12. Соколов В.Е., Орлов В.Н., 1980. Определитель млекопитающих Монгольской Народной Республики. М.: Наука. 351 с.

  13. Феоктистова Н.Ю., Кропоткина М.В., Поташникова Е.В., Гуреева А.В., Кузнецова Е.В., Суров А.В., 2018. Видообразование у аллопатрических видов хомячков подсемейства Cricetinae (Rodentia, Cricetidae) // Журнал общей биологии. Т. 79. № 4. С. 262–276.

  14. Феоктистова Н.Ю., Мещерский И.Г., Карманова Т.Н., Гуреева А.В., Суров А.В., 2022. Разнообразие аллелей главного комплекса гистостовместимости у обыкновенного хомяка (Cricetus cricetus) в городской и сельской популяциях // Известия Академии наук, серия биологическая. № 5. С. 470–481.

  15. Шилова С.А., 2011. Вопросы контроля численности и охраны сусликов России (род Spermophilus) // Аридные экосистемы. Т. 17. № 4. С. 104–112.

  16. Шилова С.А., Савинецкая Л.Е., Чабовский А.В., 2015. Долговременная современная динамика популяции желтого суслика (Spermophilus fulvus Rodentia, Sciridae) в Приерусланских песках Заволжья // Зоологический журнал. Т. 94. № 8. С. 944–954.

  17. Шилова С.А., Шекарова О.Н., 2005. Суслики Евразии. Проблемы охраны // Степной бюллетень. Т. 18. С. 20–25.

  18. Acevedo-Whitehouse K., Cunningham A.A., 2006. Is MHC enough for understanding wildlife immunogenetics? // Trends in Ecology and Evolution. V. 21. № 8. P. 433–438.

  19. Aguilar A., Roemer G., Debenham S., Binns M., Garcelon D., Wayne R.K., 2004. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal // Proceedings of the National Academy of Sciences. V. 101. P. 3490–3494.

  20. Axtner J., Sommer S., 2007. Gene duplication, allelic diversity, selection processes and adaptive value of mhc class ii drb genes of the bank vole, Clethrionomys glareolus. Immunogenetics. V. 59. P. 417–426.

  21. Babik W., Durka W., Radwan J., 2005. Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber) // Molecular Ecology. V. 14. № 14. P. 4249–4257.

  22. Banaszek A., Bogomolov P., Feoktistova N., La Haye M., Monecke S., Reiners T.E., Rusin M., Surov A., Weinhold U., Ziomek J., 2020. Cricetus cricetus. The IUCN Red List of Threatened Species 2020: e.T5529A111875852.

  23. Bandelt H.-J., Forster P., Röhl A., 1999. Median-joining networks for inferring intraspecific phylogenies // Molecular Biology and Evolution. V. 16. P. 37–48.

  24. Becker L., Nieberg C., Jahreis K., Peters E., 2009. MHC class II variation in the endangered European mink Mustela lutreola (L. 1761) Consequences for species conservation // Immunogenetics. V. 61. P. 281–288.

  25. Biedrzycka A., Kloch A., Buczek M., Radwan J., 2011. Major histocompatibility complex DRB genes and blood parasite loads in fragmented populations of the spotted suslik Spermophilus suslicus // Mammalian Biology. V. 76. № 6. P. 672–677.

  26. Biedrzycka A., Konopinski M.K., 2007. Genetic variability and the effect of habitat fragmentation in spotted suslik Spermophilus suslicus populations from two different regions // Conservation Genetics. № 9. P. 1211–1221.

  27. Bushnell B., Rood J., Singer E., 2017. BB Merge – Accurate paired shotgun read merging via overlap // PLoS ONE. V. 12. № 10: e0185056.

  28. Edgar R.C., 2010. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. V. 26. P. 2460–2461.

  29. Edgar R.C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing // bioRxiv 081257.

  30. Ekblom R., Sæther S.A., Fiske P., Kålås J.A., Höglund J., 2010. Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe // Genetica. V. 18. P. 453–461.

  31. Flint W.E., 1966. Die Zwerghamster der Palaarktischen fauna. Wittenberg: A. Ziemsen Verlag. P. 1–99.

  32. Fox C.W., Reed D.H., 2011. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis // Evolution. V. 65. № 1. P. 246–258.

  33. Gigliotti A.K., Bowen W.D., Hammill M.O., Puryear W.B., Runstadler J., Wenzel F.W., Cammen K.M., 2022. Sequence Diversity and Differences at the Highly Duplicated MHC-I Gene Reflect Viral Susceptibility in Sympatric Pinniped Species // Journal of Heredity. V. 113. № 5. P. 525–537.

  34. Gomez-Mestre I., Tejedo M., 2004. Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita // Evolution. V. 58. P. 2343–2352.

  35. Harf R., Sommer S., 2005. Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari // Molecular Ecology. V. 14. № 1. P. 85–91.

  36. Hedrick P.W., 2001. Conservation genetics: Where are we now? // Trends in Ecology and Evolution. V. 16. P. 629–636.

  37. Janeway C.A., 2001. How the immune system works to protect the host from infection: a personal view // Proceedings of the National Academy of Sciences. V. 98. № 13. P. 7461–7468.

  38. Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms // Molecular Biology and Evolution. V. 35. P. 1547–1549.

  39. Langmead B., Salzberg S., 2012. Fast gapped-read alignment with Bowtie 2 // Nature Methods. V. 9. P. 357–359.

  40. Lebedev V.S., Bannikova A.A., Neumann K., Ushakova M.V., Ivanova N.V., Surov A.V., 2018. Molecular phylogenetics and taxonomy of dwarf hamsters Cricetulus Milne-Edwards, 1867 (Cricetidae, Rodentia): description of a new genus and reinstatement of another // Zootaxa. V. 4387. № 2. P. 331–349.

  41. Lobo K., Johnson P.A., Johnson J.C., Mardon A., 2021. On Genetic Rescue: A Brief Conspectus // Academia Letters 3554.

  42. Luikart G., England P.R., Tallmo D., Jordan S., Taberlet P., 2003. The power and promise of population genomics: From genotyping to genome typing // Nature Reviews Genetics. V. 4. P. 981–999.

  43. Madsen T., Olsson M., Wittzell H., Stille B., Gullberg A., Shine R., Andersson S., Tegelström H., 2000. Population size and genetic diversity in sand lizards (Lacerta agilis) and adders (Vipera berus) // Biological Conservation. V. 94. № 2. P. 257–262.

  44. Mammal Species of the World, 2005. A Taxonomic and Geographic Reference. Eds Wilson D.E., Reeder D. Baltimore: The J. Hopkins University Press. V. 2. P. 1040–1041.

  45. McKay J.K., Latta R.G., 2002. Adaptive population divergence: markers, QTL and traits // Trends in Ecology and Evolution. V. 17. № 6. P. 285–291.

  46. Miller H.C., Allendorf F., Daugherty C.H., 2010. Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.) // Molecular Ecology. V. 19. P. 3894–3908.

  47. Miller H.C., Miller K.A., Daugherty C.H., 2008. Reduced MHC variation in a threatened tuatara species // Animal Conservation. V. 11. P. 206–214.

  48. Neumann K., Michaux J.R., Maak S., Jansman H.A., Kayser A., Mundt G., Gattermann R., 2005. Genetic spatial structure of European common hamsters (Cricetus cricetus) – a result of repeated range expansion and demographic bottlenecks // Molecular Ecology. V. 14. № 5. P. 1473–483.

  49. O’Brien S.J., Evermann J.F., 1988. Interactive influence of infectious disease and genetic diversity in natural populations // // Trends in Ecology and Evolution. V. 3. № 10. P. 254–259.

  50. Palo J.U., O’Hara R.B., Laugen A.T., Laurila A., Primmer C.R., Merila J., 2003. Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: Evidence from a comparison of molecular and quantitative genetic data // Molecular Ecology. V. 12. P. 1963–1978.

  51. Pfrender M.E., Spitze K., Hicks J., Morgan K., Latta L., Lynch M., 2000. Lack of concordance between genetic diversity estimates at the molecular and quantitative-trait levels // Conservation Genetics. V. 1. P. 263–269.

  52. Radwan J., Biedrzycka A., Babik W., 2010. Does reduced MHC diversity decrease viability of vertebrate populations? // Biological Conservation. V. 143. P. 537–544.

  53. Reed D.H., Frankham R., 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis // Evolution. V. 55. P. 1095–1110.

  54. Shiina T., Yamada Y., Aarnink A., Suzuki S., Masuya A., Ito S., Ido D., Yamanaka H., Iwatani C., Tsuchiya H., Ishigaki H., Itoh Y., Ogasawara K., Kulski J.K., Blancher A., 2015. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing // Immunoge. V. 67. № 10. P. 563–578.

  55. Smith A.T., Xie Y., 2008. A Guide to the Mammals of China. United Kingdom: Princeton University Press. P. 240.

  56. Smulders M.J.M., Snoek L.B., Booy G., Vosman B., 2003. Complete loss of MHC genetic diversity in the Common Hamster (Cricetus cricetus) population in The Netherlands. Consequences for conservation strategies // Conservation Genetics. V. 4. № 4. P. 441–451.

  57. Sommer S., 2005. The importance of immune gene variability (MHC) in evolutionary ecology and conservation // Frontiers in Zoology. V. 2. № 16. P. 1–18.

  58. Surov A., Banaszek A., Bogomolov P., Feoktistova N., Monecke S., 2016. Dramatic global decrease in the range and reproduction rate of the European hamster Cricetus cricetus // Endangered species research. V. 31. P. 119–145.

  59. Ujvari B., Belov K., 2011. Major histocompatibility complex (MHC) markers in conservation biology // International Journal of Molecular Sciences. V. 12. P. 5168–5186.

  60. Ujvari B., Olsson M., Madsen T., 2005. Discrepancy in mitochondrial and nuclear polymorphism in meadow vipers (Vipera ursinii) questions the unambiguous use of mtDNA in conservation studies // Amphibia-Reptilia. V. 26. P. 287–292.

  61. Villesen P., 2007. FaBox: an online toolbox for fasta sequences // Molecular Ecology Notes. V. 7. P. 965–968.

  62. Willi Y., Van Buskirk J., Hoffmann A.A., 2006. Limits to the adaptive potential of small populations // Annual Review of Ecology, Evolution, and Systematics. V. 37. P. 433–458.

  63. Winternitz J.C., Wares J.P., 2013. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents // Ecology and Evolution. V. 3. № 6. P. 1552–1568.

  64. Zhu L., Ruan X.D., Ge Y.F., Wan Q.H., Fang S.G., 2007. Low major histocompatibility complex class II DQA diversity in the giant panda (Ailuropoda melanoleuca) // BMC Genetics. V. 8: 29.

Дополнительные материалы отсутствуют.