Биоорганическая химия, 2023, T. 49, № 4, стр. 369-383

Теоретическое обоснование и формирование экспериментальных подходов к изменению структуры гиалуронидазы на основе ее вычислительного взаимодействия с короткоцепочечными гликозаминогликановыми лигандами

А. В. Максименко 1*, Р. Ш. Бибилашвили 1

1 Национальный медицинский исследовательский центр кардиологии имени академика Е.И. Чазова Минздрава России
121552 Москва, 3-я Черепковская улица, 15А, Россия

* E-mail: alex.v.maks@mail.ru

Поступила в редакцию 13.07.2022
После доработки 26.07.2022
Принята к публикации 28.07.2022

Аннотация

На основе данных теоретического изучения в обзоре обосновываются экспериментальные подходы к получению и последующему исследованию модифицированных форм гиалуронидазы. Исследовательское вычислительное рассмотрение взаимодействия 3D-модели бычьей тестикулярной гиалуронидазы (БТГ) с короткоцепочечными гликозаминогликановыми лигандами продемонстрировало разнообразие и значимость их воздействия на структуру фермента. Отмеченное воздействие осуществлялось благодаря электростатическим нековалентным взаимодействиям (без специфического связывания с активным центром), вызывая заметные конформационные изменения молекулы биокатализатора/фермента. В результате таких изменений наблюдались инактивация и стабилизация глобулы фермента, изменение его ингибирования гепарином. Присоединение к молекулярной поверхности гиалуронидазы тримеров хондроитина по центрам cn6, cn3 и cn1 повышало ее стабильность, а связывание по центрам cs2, cs4, cs7, cs8 или cs1, cs2, cs4, cs7 и cs8 тримеров хондроитинсульфата способствовало снижению ингибирования фермента тетрамером гепарина. К молекуле свободной гиалуронидазы (без лигандов) присоединяются по центрам связывания гликозаминогликановые лиганды с наибольшей энергией связывания. Отмечена важность их связывания для регуляции функционирования фермента, а также наличия многообразного и многокомпонентного микроокружения биокатализатора. Выявленная в теоретическом изучении последовательность предпочтительного связывания лигандов с гиалуронидазой позволяет оценить реальность достижения ее экспериментальной селективной модификации (которая может осуществляться нековалентно и ковалентно, например, с тримерами хондроитинсульфата по центрам cs7, cs1, cs5) для потенциального экспериментального получения стабилизированных форм фермента. Перспективными подходами представляются нековалентные воздействия на гиалуронидазу тримеров хондроитина или хондроитинсульфата, как и ковалентная модификация биокатализатора тримером хондроитинсульфата или получение генно-инженерных производных фермента. Упомянутые изменения структуры гиалуронидазы могут способствовать выполнению ее направленного экспериментального дизайна для последующего биомедицинского исследования и практического клинического испытания.

Ключевые слова: бычья тестикулярная гиалуронидаза, пространственная структура фермента, гликозаминогликановые лиганды, нековалентная и ковалентная модификация гиалуронидазы, получение новых лекарственных форм гиалуронидазы

Список литературы

  1. Максименко А.В., Бибилашвили Р.Ш. // Биоорг. химия. 2018. Т. 44. С. 147–157. [Maksimenko A.V., Beabealashvili R.S. // Russ. J. Bioorg. Chem. 2018. V. 44. P. 165–172.] https://doi.org/10.1134/S1068162018020048

  2. Reitsma S., Slaaf D.W., Vink Y., van Zandvoort M.A., onde Egbrink M.G. // Pflüger’s Arch. 2007. V. 454. P. 345–359. https://doi.org/10.1007/s00424-007-0212-8

  3. Maksimenko A. // Cardiology and Cardiovascular Res. 2020. V. 4. P. 220–230.

  4. Chandel N.S. // Cold Spring Harbor Perspective Biol. 2021. V. 13. P. 1–7. https://doi.org/10.1101/cshspect.040568

  5. Sankaranarayanan N.V., Nagarajan B., Desai U.R. // Curr. Opin. Struct. Biol. 2018. V. 50. P. 91–100. https://doi.org/10.1016/j.sbi.2017.12.004

  6. Yang J., Chi L. // Carbohydr. Res. 2017. V. 452. P. 54–63. https://doi.org/10.1016/j.carres.2017.10.008

  7. Nieuwdorp M., Meuwese M.C., Vink H., Hoekstra J.B., Kastelein J.J., Stroes E.G.S. // Curr. Opin. Lipidol. 2005. V. 16. P. 507–511. https://doi.org/10.1097/01.mol.0000181325.08926.9c

  8. Broekhuisen L.N., Moojij H.L., Kastelein J.J., Stroes E.G.S., Vink H., Nieuwdorp M. // Curr. Opin. Lipidol. 2009. V. 20. P. 57–62. https://doi.org/10.1097/mol.0b013e328321b587

  9. Andreozzi G.M. // Int. Angiol. 2014. V. 33. P. 255–262.

  10. Coccheri S. // Int. Angiol. 2014. V. 33. P. 263–274.

  11. Masola V., Zaza G., Onisto M., Lupo A., Gambaro G. // Int. Angiol. 2014. V. 33. P. 243–254.

  12. Manello F., Ligi D., Raffetto J.D. // Int. Angiol. 2014. V. 33. P. 236–242.

  13. Максименко А.В., Турашев А.Д., Бибилашвили Р.Ш. // Биохимия. 2015. Т. 80. С. 348–357. [Maksimenko A.V., Turashev A.D., Beabealashvili R.S. // Biochemistry (Moscow). 2015. V. 80. P. 284–295.] https://doi.org/10.1134/S0006297915030049

  14. Максименко А.В., Бибилашвили Р.Ш. // Биоорг. химия. 2020. Т. 46. С. 151–157. [Maksimenko A.V., Beabealashvili R.S. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 181–186.] https://doi.org/10.1134/S1068162020020156

  15. Clemente-Moragon A., Gomez M., Villena-Gutierrez R., Lalama D.V., Garcia-Prieto J., Martinez F., Sanchez-Cabo F., Fuster V., Oliver E., Ibanez B. // Eur. Heart J. 2020. V. 41. P. 4425–4440. https://doi.org/10.1093/eurheartj/ehaa733

  16. Jung H. // Arch. Plast. Surg. 2020. V. 47. P. 297–300. https://doi.org/10.5999/aps.2020.00752

  17. Максименко А.В., Бибилашвили Р.Ш. // Изв. Акад. наук. Серия хим. 2018. Т. 67. С. 636–646. https://doi.org/10.1007/s11172-018-2117-4

  18. Максименко А.В., Сахарова Ю.С., Бибилашвили Р.Ш. // Кардиологич. вестник. 2021. Т. 16. С. 15–22. https://doi.org/10.17116/Cardiobulletin20211603115

  19. Максименко А.В., Сахарова Ю.С., Бибилашвили Р.Ш. // Кардиологич. вестник. 2021. Т. 16. С. 17–25. https://doi.org/10.17116/Cardiobulletin202116041157

  20. Максименко А.В., Ваваева А.В., Сахарова Ю.С., Ваваев А.В., Бибилашвили Р.Ш. // Кардиологич. вестник. 2022. Т. 17. С. 39–43. https://doi.org/10.17116/Cardiobulletin20221703139

  21. Турашев А.Д., Тищенко Е.Г., Максименко А.В. // Мол. медицина. 2009. № 6. С. 50–55.

  22. Zaghmi A., Greschner A.A., Gauthier M.A. // In: Polymer-Protein Conjugates / Eds. Pasut G., Zalipsky S. Elsevier, 2020. P. 389–406. https://doi.org/10.1016/B978-0-444-64081-9.00017-6

  23. Maneval D.C., Caster C.L., Derunes C., Locke T.W., Muhsin M., Sauter S., Sekulovich R.E., Thompson C.B., LaBarre M.J. // In: Polymer-Protein Conjugates / Eds. Pasut G., Zalipsky S. Elsevier, 2020. P. 175–204. https://doi.org/10.1016/B978-0-444-64081-9.00009-7

  24. Ferguson E.L., Varache M., Stokniene J., Thomas D.W. // In: Polymer-Protein Conjugates / Eds. Pasut G., Zalipsky S. Elsevier, 2020. P. 421–453. https://doi.org/10.1016/B978-0-444-64081-9.00019-X

  25. Миленькина С.Г., Дельвер Е.П., Белогуров А.А., Бибилашвили Р.Ш., Арзамасцев Е.В., Староверов И.И. // Кардиологич. вестник. 2019. Т. 15. С. 12–21. https://doi.org/10.36396/MS.2019.15.4.002

  26. Марков В.А., Дупляков Д.В., Константинов С.Л., Клейн Г.В., Аксентьев С.Б., Платонов Д.Ю., Вышлов Е.В., Пономарев Е.А., Рабинович Р.М., Макаров Е.Л., Кулибаба Е.В., Юневич Д.С., Крицкая О.В., Баранов Е.А., Талибов О.Б., Герасимец Е.А. // Рос. кардиологич. журнал. 2018. Т. 23. С. 110–116. https://doi.org/10.15829/1560-4071-2018-11-110-116

  27. Марков В.А., Дупляков Д.В., Константинов С.Л., Клейн Г.В., Аксентьев С.Б., Платонов Д.Ю., Вышлов Е.В., Пономарев Е.А., Рабинович Р.М., Макаров Е.Л., Кулибаба Е.В., Крицкая О.В., Баранов Е.А., Талибов О.Б., Герасимец Е.А. // Кардиологич. вестник. 2017. Т. 12. № 3. С. 52–59.

  28. Gurevich V. // Cardiol. Vascular Res. 2021. V. 5. P. 1–3.

  29. Maksimenko A.V., Tischenko E.G. // J. Thromb. Thrombolys. 1999. V. 7. P. 307–312. https://doi.org/10.1023/a:1008939428688

  30. Maкcимeнкo A.B. // Acta Naturae. 2012. T. 4. C. 76–86. [Maksimenko A.V. // Acta Naturae. 2012. V. 4. P. 72–81.] https://www.ncbi.nlm.nih.gov/m/pubmed/23150805

  31. Maksimenko A., Turashev A., Fedorovich A., Rogoza A., Tischenko E. // J. Life Sci. 2013. V. 7. № 2. P. 171–188.

  32. Trizna E., Baidamshina D., Gorshkova A., Drucker V., Bogachev M., Tikhonov A., Kayumov A. // Pharmaceutics. 2021. V. 13. P. 1740. https://doi.org/10.3390/pharmaceutics13111740

  33. Кульчавеня Е.В., Шевченко С.Ю., Чередниченко А.Г., Бреусов А.А., Винницкий А.А. // Урология. 2020. № 3. С. 56–62. https://doi.org/10.18565/urology.2020.3.56-62

Дополнительные материалы отсутствуют.