Биоорганическая химия, 2023, T. 49, № 5, стр. 443-454

Конденсаты нуклеопротеина SARS-CoV-2 на вирусной РНК и их низкомолекулярные модуляторы

Ю. И. Светлова 1, Ю. И. Павлова 12, А. В. Аралов 3, А. М. Варижук 12*

1 ФГБУ “Федеральный научно-клинический центр физико-химической медицины” Федерального медико-биологического агентства
119435 Москва, ул. Малая Пироговская, 1а, Россия

2 ФГАОУ ВО “Московский физико-технический институт (национальный исследовательский университет)”
141701, Долгопрудный, Институтский переулок, 9, Россия

3 ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
117997 Москва, ул. Миклухо-Маклая, 16/10, Россия

* E-mail: annavarizhuk@rcpcm.org

Поступила в редакцию 16.11.2022
После доработки 24.11.2022
Принята к публикации 25.11.2022

Аннотация

Феномен разделения фаз “жидкость–жидкость” (LLPS) описан для ряда биополимеров и достаточно полно изучен на примере нескольких белков с неструктурированными фрагментами. К ним относится нуклеокапсидный белок (N-белок) коронавируса тяжелого острого респираторного синдрома 2. В данном обзоре проанализированы закономерности формирования конденсатов N-белка в присутствии вирусной РНК. Основное внимание уделено типам транзиентных контактов внутри конденсатов и фрагментам N-белок/РНК, участвующим в формировании таких контактов; обобщены современные представления о роли конденсатов в жизненном цикле вируса и их влиянии на защитные свойства клетки-хозяина. В заключительной части обзора рассмотрена возможность регуляции формирования вирусных конденсатов с помощью низкомолекулярных соединений – эндогенных и экзогенных модуляторов разделения фаз, что может стать основой нового направления дизайна противовирусных терапевтических агентов.

Ключевые слова: разделение фаз, конденсаты, N-белок, SARS-CoV-2, вирусная РНК, низкомолекулярные противовирусные агенты

Список литературы

  1. Aleem A., Akbar Samad A.B., Slenker A.K. // Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022. https://pubmed.ncbi.nlm.nih.gov/34033342/

  2. Huang Y., Yang C., Xu X., Xu W., Liu S. // Acta Pharmacol. Sin. 2020. V. 41. P. 1141–1149. https://doi.org/10.1038/s41401-020-0485-4

  3. Ullrich S., Nitsche C. // Bioorg. Med. Chem. Lett. 2020. V. 30. P. 127377. https://doi.org/10.1016/j.bmcl.2020.127377

  4. Uengwetwanit T., Chutiwitoonchai N., Wichapong K., Karoonuthaisiri N. // Comput. Struct. Biotechnol. J. 2022. V. 20. P. 882–890. https://doi.org/10.1016/j.csbj.2022.02.001

  5. Bai Z., Cao Y., Liu W., Li J. // Viruses. 2022. V. 13. P. 1115. https://doi.org/10.3390/v13061115

  6. Yao H., Song Y., Chen Y., Wu N., Xu J., Sun C., Zhang J., Weng T., Zhang Z., Wu Z., Cheng L., Shi D., Lu X., Lei J., Crispin M., Shi Y., Li L., Li S. // Cell. 2020. V. 183. P. 730–738.E13. https://doi.org/10.1016/j.cell.2020.09.018

  7. Lu S., Ye Q., Singh D., Cao Y., Diedrich J.K., Yates III J.R., Villa E., Cleveland D.W., Corbett K.D. // Nat. Commun. 2021. V. 12. P. 502. https://doi.org/10.1038/s41467-020-20768-y

  8. Cubuk J., Alston J.J., Incicco J.J., Singh S., Stuchell-Brereton M.D., Ward M.D., Zimmerman M.I., Vithani N., Griffith D., Wagoner J.A., Bowman G.R., Hall K.B., Soranno A., Holehouse A.S. // Nat. Commun. 2021. V. 12. P. 1936. https://doi.org/10.1038/s41467-021-21953-3

  9. Wang B., Zhang L., Dai T., Qin Z., Lu H., Zhang L., Zhou F. // Signal Transduct. Target. Ther. 2021. V. 6. P. 290. https://doi.org/10.1038/s41392-021-00678-1

  10. Li H., Ernst C., Kolonko-Adamska M., Man J., Parissi V., Wai-Lung Ng B. // Trends Microbiol. 2022. V. 30. P. 1217–1231. https://doi.org/10.1016/j.tim.2022.06.005

  11. Bäuerlein F.J.B., Fernández-Busnadiego R., Baumeister W. // Trends Cell. Biol. 2020. V. 30. P. 951–966. https://doi.org/10.1016/j.tcb.2020.08.007

  12. Savastano A., Ibáñez de Opakua A., Rankovic M., Zweckstetter M. // Nat. Commun. 2020. V. 11. P. 6041. https://doi.org/10.1038/s41467-020-19843-1

  13. Cascarina S.M., Ross E.D. // FASEB J. 2020. V. 34. P. 9832–9842. https://doi.org/10.1096/fj.202001351

  14. Cascarina S.M., Ross E.D. // J. Biol. Chem. 2022. V. 298. P. 101677. https://doi.org/10.1016/j.jbc.2022.101677

  15. Dang M., Song J. // Biophys. Rev. 2022. V. 14. P. 709–715. https://doi.org/10.1007/s12551-022-00957-3

  16. Alberti S., Gladfelter A., Mittag T. // Cell. 2019. V. 176. P. 419–434. https://doi.org/10.1016/j.cell.2018.12.035

  17. Abyzov A., Blackledge M., Zweckstetter M. // Chem. Rev. 2022. V. 122. P. 6719–6748. https://doi.org/10.1021/acs.chemrev.1c00774

  18. Titus A.R., Ferreira L.A., Belgovskiy A.I., Kooijman E.E., Mann E.K., Mann J.A., Meyer W.V., Smart A.E., Uversky V.N., Zaslavsky B.Y. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 4574–4580. https://doi.org/10.1039/C9CP05810A

  19. Jo Y., Jang J., Song D., Park H., Jung Y. // Chem. Sci. 2022. V. 13. P. 522–530. https://doi.org/10.1039/D1SC05672G

  20. O’Flynn B.G., Mittag T. // Curr. Opin. Cell. Biol. 2021. V. 69. P. 70–79. https://doi.org/10.1016/j.ceb.2020.12.012

  21. Brocca S., Grandori R., Longhi S., Uversky V. // Int. J. Mol. Sci. 2020. V. 21. P. 9045. https://doi.org/10.3390/ijms21239045

  22. Zhou R., Zeng R., von Brunn A., Lei J. // Mol. Biomed. 2020. V. 1. P. 2. https://doi.org/10.1186/s43556-020-00001-4

  23. Wang S., Dai T., Qin Z., Pan T., Chu F., Lou L., Zhang L., Yang B., Huang H., Lu H., Zhou F. // Nat. Cell. Biol. 2021. V. 23. P. 718–732. https://doi.org/10.1038/s41556-021-00710-0

  24. Roden C.A., Dai Y., Giannetti C.A., Seim I., Lee M., Sealfon R., McLaughlin G.A., Boerneke M.A., Iserman C., Wey S.A., Ekena J.L., Troyanskaya O.G., Weeks K.M., You L., Chilkoti A., Gladfelter A.S. // Nucleic Acids Res. 2022. V. 50. P. 8168–8192. https://doi.org/10.1093/nar/gkac596

  25. Iserman C., Roden C.A., Boerneke M.A., Sealfon R.S.G., McLaughlin G.A., Jungreis I., Fritch E.J., Hou Y.J., Ekena J., Weidmann C.A., Theesfeld C.L., Kellis M., Troyanskaya O.G., Baric R.S., Sheahan T.P., Weeks K.M., Gladfelter A.S. // Mol. Cell. 2020. V. 80. P. 1078–1091.E6. https://doi.org/10.1016/j.molcel.2020.11.041

  26. Riback J.A., Zhu L., Ferrolino M.C., Tolbert M., Mitrea D.M., Sanders D.W., Wei M.-T., Kriwacki R.W., Brangwynne C.P. // Nature. 2020. V. 581. P. 209–214. https://doi.org/10.1038/s41586-020-2256-2

  27. Weidmann C.A., Mustoe A.M., Jariwala P.B., Calabrese J.M., Weeks K.M. // Nat. Biotechnol. 2021. V. 39. P. 347–356. https://doi.org/10.1038/s41587-020-0709-7

  28. Zachrdla M., Savastano A., Ibáñez de Opakua A., Cima-Omori M.S., Zweckstetter M. // Protein Sci. 2022. V. 31. P. e4409. https://doi.org/10.1002/pro.4409

  29. Banani S.F., Rice A.M., Peeples W.B., Lin Y., Jain S., Parker R., Rosen M.K. // Cell. 2016. V. 166. P. 651–663. https://doi.org/10.1016/j.cell.2016.06.010

  30. Choi J.-M., Holehouse A.S., Pappu R.V. // Annu. Rev. Biophys. 2020. V. 49. P. 107–133. https://doi.org/10.1146/annurev-biophys-121219-081629

  31. Lin Y.-H., Brady J.P., Chan H.S., Ghosh K. // J. Chem. Phys. 2020. V. 152. P. 045102. https://doi.org/10.1063/1.5139661

  32. Supekar N.T., Shajahan A., Gleinich A.S., Rouhani D.S., Heiss C., Chapla D.G., Moremen K.W., Azadi P. // Glycobiology. 2021. V. 31. P. 1080–1092. https://doi.org/10.1093/glycob/cwab044

  33. Wu J., Zhong Y., Liu X., Lu X., Zeng W., Wu C., Xing F., Cao L., Zheng F., Hou P., Peng H., Li C., Guo D. // J. Mol. Cell. Biol. 2022. V. 14. P. mjac003. https://doi.org/10.1093/jmcb/mjac003

  34. Wang J., Choi J.-M., Holehouse A.S., Lee H.O., Zhang X., Jahnel M., Maharana S., Lemaitre R., Pozniakovsky A., Drechsel D., Poser I., Pappu R.V., Alberti S., Hyman A.A. // Cell. 2018. V. 174. P. 688–699.E16. https://doi.org/10.1016/j.cell.2018.06.006

  35. Vernon R.M., Chong P.A., Tsang B., Kim T.H., Bah A., Farber P., Lin H., Forman-Kay J.D. // eLife. 2018. V. 7. P. e31486. https://doi.org/10.7554/eLife.31486

  36. Caruso I.P., dos Santos Almeida V., do Amaral M.J., de Andrade G.C., de Araújo G.R., de Araújo T.S., de Azevedo J.M., Barbosa G.M., Bartkevihi L., Bezerra P.R., dos Santos Cabral K.M., de Lourenço I.O., Malizia-Motta C.L.F., de Luna Marques A., Mebus-Antunes N.C., Neves-Martins T.C., de Sá J.M., Sanches K., Santana-Silva M.C., Vasconcelos A.A., da Silva Almeida M., de Amorim G.C., Anobom C.D., da Poian A.T., Gomes-Neto F., Pinheiro A.S., Almeida F.C.L. // Int. J. Biol. Macromol. 2022. V. 203. P. 466–480. https://doi.org/10.1016/j.ijbiomac.2022.01.121

  37. Zhao H., Nguyen A., Wu D., Li Y., Hassan S.A., Chen J., Shroff H., Piszczek G., Schuck P. // PNAS Nexus. 2022. V. 1. P. pgac049. https://doi.org/10.1093/pnasnexus/pgac049

  38. Bogunia M., Makowski M. // J. Phys. Chem. B. 2020. V. 124. P. 10326–10336. https://doi.org/10.1021/acs.jpcb.0c06399

  39. Gao T., Gao Y., Liu X., Nie Z., Sun H., Lin K., Peng H., Wang S. // BMC Microbiol. 2021. V. 21. P. 58. https://doi.org/10.1186/s12866-021-02107-3

  40. Dang M., Li Y., Song J. // Biochem. Biophys. Res. Commun. 2021. V. 541. P. 50–55. https://doi.org/10.1016/j.bbrc.2021.01.018

  41. Kim D., Lee J.-Y., Yang J.-S., Kim J.W., Kim V.N., Chang H. // Cell. 2020. V. 181. P. 914–921.E10. https://doi.org/10.1016/j.cell.2020.04.011

  42. Malone B., Urakova N., Snijder E.J., Campbell E.A. // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 21–39. https://doi.org/10.1038/s41580-021-00432-z

  43. Ziv O., Price J., Shalamova L., Kamenova T., Goodfellow I., Weber F., Miska E.A. // Mol. Cell. 2022. V. 80. P. 1067–1077.E5. https://doi.org/10.1016/j.molcel.2020.11.004

  44. Klein S., Cortese M., Winter S.L., Wachsmuth-Melm M., Neufeldt C.J., Cerikan B., Stanifer M.L., Boulant S., Bartenschlager R., Chlanda P. // Nat. Commun. 2020. V. 11. P. 5885. https://doi.org/10.1038/s41467-020-19619-7

  45. Zhang Z., Nomura N., Muramoto Y., Ekimoto T., Uemura T., Liu K., Yui M., Kono N., Aoki J., Ikeguchi M., Noda T., Iwata S., Ohto U., Shimizu T. // Nat. Commun. 2022. V. 13. P. 4399. https://doi.org/10.1038/s41467-022-32019-3

  46. Perdikari T.M., Murthy A.C., Ryan V.H., Watters S., Naik M.T., Fawzi N.L. // EMBO J. 2020. V. 39. P. e106478. https://doi.org/10.15252/embj.2020106478

  47. Luo L., Li Z., Zhao T., Ju X., Ma P., Jin B., Zhou Y., He S., Huang J., Xu X., Zou Y., Li P., Liang A., Liu J., Chi T., Huang X., Ding Q., Jin Z., Huang C., Zhang Y. // Sci. Bull. (Beijing). 2021. V. 66. P. 1194–1204. https://doi.org/10.1016/j.scib.2021.01.013

  48. Wang W., Chen J., Yu X., Lan H.Y. // Int. J. Biol. Sci. 2022. V. 18. P. 4704–4713. https://doi.org/10.7150/ijbs.72663

  49. Oh S.J., Shin O.S. // Cells. 2021. V. 10. P 530. https://doi.org/10.3390/cells10030530

  50. Wu Y., Ma L., Cai S., Zhuang Z., Zhao Z., Jin S., Xie W., Zhou L., Zhang L., Zhao J., Cui J. // Signal Transduct. Target. Ther. 2021. V. 6. P. 167. https://doi.org/10.1038/s41392-021-00575-7

  51. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. // Nat. Rev. Immunol. 2020. V. 20. P. 363–374. https://doi.org/10.1038/s41577-020-0311-8

  52. Dang M., Song J. // Protein Sci. 2022. V. 31. P. 345–356. https://doi.org/10.1002/pro.4221

  53. Patel A., Malinovska L., Saha S., Wang J., Alberti S., Krishnan Y., Hyman A.A. // Science. 2017. V. 356. P. 753–756. https://doi.org/10.1126/science.aaf6846

  54. Song J. // Protein Sci. 2021. V. 30. P. 1277–1293. https://doi.org/10.1002/pro.4079

  55. Kang J., Lim L., Lu Y., Song J. // PLoS Biol. 2019. V. 17. P. 1–33. https://doi.org/10.1371/journal.pbio.3000327

  56. Dinesh D.C., Chalupska D., Silhan J., Koutna E., Nencka R., Veverka V., Boura E. // PLoS Pathog. 2020. V. 16. P. 1–16. https://doi.org/10.1371/journal.ppat.1009100

  57. Zhao D., Xu W., Zhang X., Wang X., Ge Y., Yuan E., Xiong Y., Wu S., Li S., Wu N., Tian T., Feng X., Shu H., Lang P., Li J., Zhu F., Shen X., Li H., Li P., Zeng J. // Protein Cell. 2021. V. 12. P. 734–740. https://doi.org/10.1007/s13238-021-00832-z

  58. Zhao M., Yu Y., Sun L.-M., Xing J.-Q., Li T., Zhu Y., Wang M., Yu Y., Xue W., Xia T., Cai H., Han Q.-Y., Yin X., Li W.-H., Li A.-L., Cui J., Yuan Z., Zhang R., Zhou T., Zhang X.-M., Li T. // Nat. Commun. 2021. V. 12. P. 2114. https://doi.org/10.1038/s41467-021-22297-8

  59. Gorąca A., Huk-Kolega H., Piechota A., Kleniewska P., Ciejka E., Skibska B. // Pharmacol. Rep. 2011. V. 63. P. 849–858. https://doi.org/10.1016/S1734-1140(11)70600-4

  60. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’Neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d’Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. // Nature. 2020. V. 583. P. 459–468. https://doi.org/10.1038/s41586-020-2286-9

  61. Wheeler R.J., Lee H.O., Poser I., Pal A., Doeleman T., Kishigami S., Kour S., Anderson E.N., Marrone L., Murthy A.C., Jahnel M., Zhang X., Boczek E., Fritsch A., Fawzi N.L., Sterneckert J., Pandey U., David D.C., Davis B.G., Baldwin A.J., Hermann A., Bickle M., Alberti S., Hyman A.A. // bioRxiv. 2019. https://doi.org/10.1101/721001

  62. Itoh Y., Iida S., Tamura S., Nagashima R., Shiraki K., Goto T., Hibino K., Ide S., Maeshima K. // Life Sci. Alliance. 2021. V. 4. P. e202001005. https://doi.org/10.26508/lsa.202001005

  63. Blount K.F., Zhao F., Hermann T., Tor Y. // J. Am. Chem. Soc. 2005. V. 127. P. 9818–9829. https://doi.org/10.1021/ja050918w

  64. Svetlova J., Knizhnik E., Manuvera V., Severov V., Shirokov D., Grafskaia E., Bobrovsky P., Matyugina E., Khandazhinskaya A., Kozlovskaya L., Miropolskaya N., Aralov A., Khodarovich Y., Tsvetkov V., Kochetkov S., Lazarev V., Varizhuk A. // Int. J. Mol. Sci. 2022. V. 23. P. 15281. https://doi.org/10.3390/ijms232315281

Дополнительные материалы отсутствуют.