Биоорганическая химия, 2023, T. 49, № 6, стр. 627-640

ТБ-ИЗАТЕСТ: способ дифференциальной диагностики Mycobacterium tuberculosis методом LAMP

Ф. В. Ширшиков 12*, Ю. А. Беспятых 12

1 ФГБУ “Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина” ФМБА России
119435 Москва, ул. Малая Пироговская, 1А, Россия

2 ФГБОУ ВО “Российский химико-технологический университет имени Д.И. Менделеева”
125047 Москва, Миусская пл., 9, Россия

* E-mail: shrshkv@ya.ru

Поступила в редакцию 21.02.2023
После доработки 10.03.2023
Принята к публикации 11.03.2023

Аннотация

Чахотка, белая чума, туберкулез… Лишь относительно недавно это заболевание перестало быть абсолютно смертельным приговором для инфицированных людей, однако проблемы распространения и диагностики этого заболевания по-прежнему актуальны. В данной работе представлены результаты разработки новой тест-системы ТБ-ИЗАТЕСТ для дифференциальной диагностики вида Mycobacterium tuberculosis от нетуберкулезных микобактерий по видоспецифичному гену rv2341 с использованием метода петлевой изотермической амплификации (LAMP). Тест-система применима для количественного анализа целевой геномной ДНК и позволяет выявлять десятикратные различия в концентрации. Впервые приводятся результаты оптимизации амплификации с помощью двухстадийного протокола на основе метода ортогональных матриц Тагути. Предложена теоретическая интерпретация высоких значений эффективности амплификации, наблюдаемых в реакции LAMP. Предел детекции разработанной тест-системы составляет 40 геном-эквивалентов на реакцию, а стадия амплификации требует 15 мин. По совокупности характеристик тест-система ТБ-ИЗАТЕСТ превосходит все известные способы идентификации M. tuberculosis методом LAMP.

Ключевые слова: изотермическая амплификация, микобактерии, туберкулез, rv2341

Список литературы

  1. Pai M., Behr M.A., Dowdy D., Dheda K., Divangahi M., Boehme C.C., Ginsberg A., Swaminathan S., Spigelman M., Getahun H., Menzies D., Raviglione M. // Nat. Rev. Dis. Prim. 2016. V. 2. P. 16076. https://doi.org/10.1038/nrdp.2016.76

  2. Bhat Z.S., Rather M.A., Maqbool M., Ahmad Z. // Biomed. Pharmacother. 2018. V. 103. P. 1733–1747. https://doi.org/10.1016/j.biopha.2018.04.176

  3. Chakaya J., Petersen E., Nantanda R., Mungai B.N., Migliori G.B., Amanullah F., Lungu P., Ntoumi F., Kumarasamy N., Maeurer M., Zumla A. // Int. J. Infect. Dis. 2022. V. 124. P. S26–S29. https://doi.org/10.1016/j.ijid.2022.03.011

  4. Bagcchi S. // The Lancet Microbe. 2023. V. 4. P. e20. https://doi.org/10.1016/S2666-5247(22)00359-7

  5. Achtman M. // Annu. Rev. Microbiol. 2008. V. 62. P. 53–70. https://doi.org/10.1146/annurev.micro.62.081307.162832

  6. Riojas M.A., McGough K.J., Rider-Riojas C.J., Rastogi N., Hazbón M.H. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 324–332. https://doi.org/10.1099/ijsem.0.002507

  7. Gupta R.S., Lo B., Son J. // Front Microbiol. 2018. V. 9. P. 67. https://doi.org/10.3389/fmicb.2018.00067

  8. Meehan C.J., Barco R.A., Loh Y.E., Cogneau S., Rigouts L. // Int. J. Syst. Evol. Microbiol. 2021. V. 71. P. 004922. https://doi.org/10.1099/ijsem.0.004922

  9. Johansen M.D., Herrmann J.-L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1

  10. Galagan J.E. // Nat. Rev. Genet. 2014. V. 15. P. 307–320. https://doi.org/10.1038/nrg3664

  11. Gagneux S. // Nat. Rev. Microbiol. 2018. V. 16. P. 202–213. https://doi.org/10.1038/nrmicro.2018.8

  12. Merker M., Rasigade J.-P., Barbier M., Cox H., Feuerriegel S., Kohl T.A., Shitikov E., Klaos K., Gaudin C., Antoine R., Diel R., Borrell S., Gagneux S., Nikolayevskyy V., Andres S., Crudu V., Supply P., Niemann S., Wirth T. // Nat. Commun. 2022. V. 13. P. 5105. https://doi.org/10.1038/s41467-022-32455-1

  13. Chakravorty S., Simmons A.M., Rowneki M., Parmar H., Cao Y., Ryan J., Banada P.P., Deshpande S., Shenai S., Gall A., Glass J., Krieswirth B., Schumacher S.G., Nabeta P., Tukvadze N., Rodrigues C., Skrahina A., Tagliani E., Cirillo D.M., Davidow A., Denkinger C.M., Persing D., Kwiatkowski R., Jones M., Alland D. // mBio. 2017. V. 8. P. e00812-17. https://doi.org/10.1128/mBio.00812-17

  14. World Health Organization, 2021. WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis. Rapid Diagnostics for Tuberculosis Detection, 2021 Update. Geneva: World Health Organization, 2021. https://www.who.int/publications/i/item/9789240029415

  15. Gryadunov D.A., Shaskolskiy B.L., Nasedkina T.V., Rubina A.Y., Zasedatelev A.S. // Acta Naturae. 2018. V. 10. P. 4–18. https://doi.org/10.32607/20758251-2018-10-4-4-18

  16. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. // Nucleic Acids Res. 2000. V. 28. P. e63. https://doi.org/10.1093/nar/28.12.e63

  17. Tomita N., Mori Y., Kanda H., Notomi T. // Nat. Protoc. 2008. V. 3. P. 877–882. https://doi.org/10.1038/nprot.2008.57

  18. Kaboev O.K., Luchkina L.A., Akhmedov A.T., Bekker M.L. // J. Bacteriol. 1981. V. 145. P. 21–26. https://doi.org/10.1128/jb.145.1.21-26.1981

  19. Tanner N.A., Evans T.C. // Curr. Protoc. Mol. Biol. 2014. V. 105. P. 15.14.1–15.14.14. https://doi.org/10.1002/0471142727.mb1514s105

  20. Nagamine K., Hase T., Notomi T. // Mol. Cell. Probes. 2002. V. 16. P. 223–229. https://doi.org/10.1006/mcpr.2002.0415

  21. Yonekawa T., Watanabe H., Hosaka N., Semba S., Shoji A., Sato M., Hamasaki M., Yuki S., Sano S., Segawa Y., Notomi T. // Sci. Rep. 2020. V. 10. P. 5409. https://doi.org/10.1038/s41598-020-62109-5

  22. Moore K.J.M., Cahill J., Aidelberg G., Aronoff R., Bektaş A., Bezdan D., Butler D.J., Chittur S.V., Codyre M., Federici F., Tanner N.A., Tighe S.W., True R., Ware S.B., Wyllie A.L., Afshin E.E., Bendesky A., Chang C.B., Dela Rosa R., Elhaik E., Erickson D., Goldsborough A.S., Grills G., Hadasch K., Hayden A., Her S.Y., Karl J.A., Kim C.H., Kriegel A.J., Kunstman T., Landau Z., Land K., Langhorst B.W., Lindner A.B., Mayer B.E., McLaughlin L.A., McLaughlin M.T., Molloy J., Mozsary C., Nadler J.L., D’Silva M., Ng D., O’Connor D.H., Ongerth J.E., Osuolale O., Pinharanda A., Plenker D., Ranjan R., Rosbash M., Rotem A., Segarra J., Schürer S., Sherrill-Mix S., Solo-Gabriele H., To S., Vogt M.C., Yu A.D., Mason C.E., The gLAMP Consortium // J. Biomol. Tech. 2021. V. 32. P. 228–275. https://doi.org/10.7171/jbt.21-3203-017

  23. Shirshikov F.V., Bespyatykh J.A. // Russ. J. Bioorg. Chem. 2022. V. 48. P. 1159–1174. https://doi.org/10.1134/S106816202206022X

  24. Iwamoto T., Sonobe T., Hayashi K. // J. Clin. Microbiol. 2003. V. 41. P. 2616–2622. https://doi.org/10.1128/JCM.41.6.2616-2622.2003

  25. Boehme C.C., Nabeta P., Henostroza G., Raqib R., Rahim Z., Gerhardt M., Sanga E., Hoelscher M., Notomi T., Hase T., Perkins M.D. // J. Clin. Microbiol. 2007. V. 45. P. 1936–1940. https://doi.org/10.1128/JCM.02352-06

  26. Rakotosamimanana N., Lapierre S.G., Raharimanga V., Raherison M.S., Knoblauch A.M., Raherinandrasana A.H., Rakotoson A., Rakotonirina J., Rasolofo V. // BMC Infect. Dis. 2019. V. 19. P. 542. https://doi.org/10.1186/s12879-019-4198-6

  27. World Health Organization, 2016. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis. Geneva: World Health Organization, 2016. https://apps.who.int/iris/handle/10665/249154

  28. Gray C.M., Katamba A., Narang P., Giraldo J., Zamudio C., Joloba M., Narang R., Paramasivan C.N., Hillemann D., Nabeta P., Amisano D., Alland D., Cobelens F., Boehme C.C. // J. Clin. Microbiol. 2016. V. 54. P. 1984–1991. https://doi.org/10.1128/JCM.03036-15

  29. García-Basteiro A.L., DiNardo A., Saavedra B., Silva D.R., Palmero D., Gegia M., Migliori G.B., Duarte R., Mambuque E., Centis R., Cuevas L.E., Izco S., Theron G. // Pulmonology. 2018. V. 24. P. 73–85. https://doi.org/10.1016/j.rppnen.2017.12.002

  30. Neonakis I.K., Spandidos D.A., Petinaki E. // Eur. J. Clin. Microbiol. Infect. Dis. 2011. V. 30. P. 937–942. https://doi.org/10.1007/s10096-011-1195-0

  31. Yuan L., Li Y., Wang M., Ke Z., Xu W. // J. Infect. Chemother. 2014. V. 20. P. 86–92. https://doi.org/10.1016/j.jiac.2013.07.003

  32. Nagai K., Horita N., Yamamoto M., Tsukahara T., Nagakura H., Tashiro K., Shibata Y., Watanabe H., Nakashima K., Ushio R., Ikeda M., Narita A., Kanai A., Sato T., Kaneko T. // Sci. Rep. 2016. V. 6. P. 39090. https://doi.org/10.1038/srep39090

  33. Nliwasa M., MacPherson P., Chisala P., Kamdolozi M., Khundi M., Kaswaswa K., Mwapasa M., Msefula C., Sohn H., Flach C., Corbett E.L. // PLoS One. 2016. V. 11. P. e0155101. https://doi.org/10.1371/journal.pone.0155101

  34. Yu G., Shen Y., Zhong F., Ye B., Yang J., Chen G. // PLoS One. 2018. V. 13. P. e0199290. https://doi.org/10.1371/journal.pone.0199290

  35. Lok K.H., Benjamin W.H., Kimerling M.E., Pruitt V., Lathan M., Razeq J., Hooper N., Cronin W., Dunlap N.E. // Emerg. Infect. Dis. 2002. V. 8. P. 1310–1313. https://doi.org/10.3201/eid0811.020291

  36. Thierry D., Brisson-Noël A., Vincent-Lévy-Frébault V., Nguyen S., Guesdon J.L., Gicquel B. // J. Clin. Microbiol. 1990. V. 28. P. 2668–2673. https://doi.org/10.1128/jcm.28.12.2668-2673.1990

  37. Kechin A., Oscorbin I., Cherednichenko A., Khrapov E., Schwartz Y., Stavitskaya N., Filipenko M. // Arch. Microbiol. 2023. V. 205. P. 71. https://doi.org/10.1007/s00203-023-03410-5

  38. Alonso H., Samper S., Martín C., Otal I. // BMC Genomics. 2013. V. 14. P. 422. https://doi.org/10.1186/1471-2164-14-422

  39. Zhou L., Ma C., Xiao T., Li M., Liu H., Zhao X., Wan K., Wang R. // Front. Microbiol. 2019. V. 10. P. 1–10. https://doi.org/10.3389/fmicb.2019.01887

  40. Goig G.A., Torres-Puente M., Mariner-Llicer C., Villamayor L.M., Chiner-Oms Á., Gil-Brusola A., Borrás R., Comas Espadas I. // Bioinformatics. 2019. V. 36. P. 985–989. https://doi.org/10.1093/bioinformatics/btz729

  41. Shirshikov F. V., Pekov Y.A., Miroshnikov K.A. // PeerJ. 2019. V. 7. P. e6801. https://doi.org/10.7717/peerj.6801

  42. Abramovitch R.B., Rohde K.H., Hsu F.-F., Russell D.G. // Mol. Microbiol. 2011. V. 80. P. 678–694. https://doi.org/10.1111/j.1365-2958.2011.07601.x

  43. Gupta A. // FEMS Microbiol. Lett. 2009. V. 290. P. 45–53. https://doi.org/10.1111/j.1574-6968.2008.01400.x

  44. Morero M., Ramirez M.R., Oyhenart J. // Vet. Parasitol. 2021. V. 295. P. 109462. https://doi.org/10.1016/j.vetpar.2021.109462

  45. Shoushtari M., Salehi-Vaziri M., Roohvand F., Arashkia A., Jalali T., Azadmanesh K. // Biotechnol. Lett. 2021. V. 43. P. 2149–2160. https://doi.org/10.1007/s10529-021-03175-1

  46. Wang Y., Li J., Li S., Zhu X., Wang X., Huang J., Yang X., Tai J. // Microchim. Acta. 2021. V. 188. P. 347. https://doi.org/10.1007/s00604-021-04985-w

  47. Schneider L., Blakely H., Tripathi A. // Electrophoresis. 2019. V. 40. P. 2706–2717. https://doi.org/10.1002/elps.201900167

  48. Bio-Rad Laboratories Inc., 2006. Real-Time PCR Applications Guide. Bulletin 5279. P. 4–6. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_5279.pdf

  49. Ruijter J.M., Barnewall R.J., Marsh I.B., Szentirmay A.N., Quinn J.C., van Houdt R., Gunst Q.D., van den Hoff M.J.B. // Clin. Chem. 2021. V. 67. P. 829–842. https://doi.org/10.1093/clinchem/hvab052

  50. von Hippel P.H., Johnson N.P., Marcus A.H. // Biopolymers. 2013. V. 99. P. 923–954. https://doi.org/10.1002/bip.22347

  51. Cousins D.V., Bastida R., Cataldi A., Quse V., Redrobe S., Dow S., Duignan P., Murray A., Dupont C., Ahmed N., Collins D.M., Butler W.R., Dawson D., Rodríguez D., Loureiro J., Romano M.I., Alito A., Zumarraga M., Bernardelli A. // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 1305–1314. https://doi.org/10.1099/ijs.0.02401-0

  52. Alexander K.A., Laver P.N., Michel A.L., Williams M., van Helden P.D., Warren R.M., Gey van Pittius N.C. // Emerg. Infect. Dis. 2010. V. 16. P. 1296–1299. https://doi.org/10.3201/eid1608.100314

  53. Esteban J., Muñoz-Egea M.C. // Tuberculosis and Nontuberculous Mycobacterial Infections / Ed. David Schlossberg. Washington, DC: ASM Press, 2017. P. 754. https://doi.org/10.1128/microbiolspec.TNMI7-0021-2016

  54. Ngabonziza J.C.S., Loiseau C., Marceau M., Jouet A., Menardo F., Tzfadia O., Antoine R., Niyigena E.B., Mulders W., Fissette K., Diels M., Gaudin C., Duthoy S., Ssengooba W., André E., Kaswa M.K., Habimana Y.M., Brites D., Affolabi D., Mazarati J.B., de Jong B.C., Rigouts L., Gagneux S., Meehan C.J., Supply P. // Nat. Commun. 2020. V. 11. P. 2917. https://doi.org/10.1038/s41467-020-16626-6

  55. Panda A., Drancourt M., Tuller T., Pontarotti P. // Sci. Rep. 2018. V. 8. P. 14817. https://doi.org/10.1038/s41598-018-33261-w

  56. Eldholm V., Balloux F. // Trends Microbiol. 2016. V. 24. P. 637–648. https://doi.org/10.1016/j.tim.2016.03.007

  57. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. // J. Mol. Biol. 1990. V. 215. P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

  58. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. // Nucleic Acids Res. 2019. V. 47. P. D607–D613. https://doi.org/10.1093/nar/gky1131

  59. Chitale P., Lemenze A.D., Fogarty E.C., Shah A., Grady C., Odom-Mabey A.R., Johnson W.E., Yang J.H., Eren A.M., Brosch R., Kumar P., Alland D. // Nat. Commun. 2022. V. 13. P. 7068. https://doi.org/10.1038/s41467-022-34853-x

  60. Lu J., Johnston A., Berichon P., Ru K., Korbie D., Trau M. // Sci. Rep. 2017. V. 7. P. 41328. https://doi.org/10.1038/srep41328

  61. Dwight Z., Palais R., Wittwer C.T. // Bioinformatics. 2011. V. 27. P. 1019–1020. https://doi.org/10.1093/bioinformatics/btr065

  62. Zuker M. // Nucleic Acids Res. 2003. V. 31. P. 3406–3415. https://doi.org/10.1093/nar/gkg595

  63. Kerpedjiev P., Hammer S., Hofacker I.L. // Bioinformatics. 2015. V. 31. P. 3377–3379. https://doi.org/10.1093/bioinformatics/btv372

  64. Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasiak P., Bartol N., Blazewicz J., Adamiak R.W. // Nucleic Acids Res. 2012. V. 40. P. e112. https://doi.org/10.1093/nar/gks339

  65. Sehnal D., Bittrich S., Deshpande M., Svobodová R., Berka K., Bazgier V., Velankar S., Burley S.K., Koča J., Rose A.S. // Nucleic Acids Res. 2021. V. 49. P. W431–W437. https://doi.org/10.1093/nar/gkab314

  66. Shitikov E.A., Bespyatykh J.A., Ischenko D.S., Alexeev D.G., Karpova I.Y., Kostryukova E.S., Isaeva Y.D., Nosova E.Y., Mokrousov I.V., Vyazovaya A.A., Narvs-kaya O.V., Vishnevsky B.I., Otten T.F., Zhuravlev V.Iu., Yablonsky P.K., Ilina E.N., Govorun V.M. // PLoS One. 2014. V. 9. P. e84971. https://doi.org/10.1371/journal.pone.0084971

  67. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. // Clin. Chem. 2009. V. 55. P. 611–622. https://doi.org/10.1373/clinchem.2008.112797

Дополнительные материалы отсутствуют.