Экология, 2023, № 4, стр. 318-322

Распределение генетических линий Parisotoma notabilis (Collembola) в градиенте урбанизации

А. В. Стрючкова a*

a Московский педагогический государственный университет
129164 Москва, ул. Кибальчича, 6, корп. 3, Россия

* E-mail: astr2502@yandex.ru

Поступила в редакцию 14.10.2022
После доработки 14.01.2023
Принята к публикации 05.03.2023

Ключевые слова: почвенная мезофауна, коллемболы, популяции, толерантность, экологическая специализация

Список литературы

  1. Koehler H.H. The use of soil mesofauna for the judgement of chemical impact on ecosystems // Agriculture, Ecosystems & Environment. 1992. V. 40. № 1. P. 193–205. https://doi.org/10.1016/0167-8809(92)90092-P

  2. Воробейчик Е.Л., Садыков О.Ф., Фарафонтов М.Г. Экологическое нормирование техногенных загрязнений наземных экосистем (локальный уровень). Екатеринбург: Наука, 1994. P. 280.

  3. Hopkin S.P. Biology of the springtails (Insecta: Collembola). Oxford: University Press, 1997. P. 340.

  4. Van Straalen N. Community structure of soil arthropods as a bioindicator of soil health // Biol. Indic. Soil Health. 1997. P. 235–264.

  5. Fiera C. Biodiversity of Collembola in urban soils and their use as bioindicators for pollution // Pesqui. Agropecuária Bras. 2009. V. 44. P. 868–873. https://doi.org/10.1590/S0100-204X2009000800010

  6. Machado J. da S., Oliveira L.C.I., Santos J.C.P. et al. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems // Biota Neotropica. 2019. V. 19. № 1. e20180618. https://doi.org/10.1590/1676-0611-BN-2018-0618

  7. Kopeszki H. An active bioindication method for the diagnosis of soil properties using Collembola // Pedobiologia. 1997. V. 41. P. 159–166.

  8. Sahana A. Soil Pollution vs. Soil Collembola as a Bioindicator: A review // J. Sci. 2018. V. 2. № 5. P. 1–11. https://doi.org/10.47944/jos2.5.2018.1

  9. ISO 11267, Soil quality — Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. Inter. Stand. Org. Ed. Genève, 1999. P. 1–16.

  10. Porco D., Greenslade B.A.P., Janion C. et al. Challenging species delimitation in Collembola: cryptic diversity among common springtails unveiled by DNA barcoding // Invertebr. Syst. 2012. V. 26. № 6. P. 470–477. https://doi.org/10.1071/IS12026

  11. Zhang B., Chen T.-W., Mateos E. et al. Cryptic species in Lepidocyrtus lanuginosus (Collembola: Entomobryidae) are sorted by habitat type // Pedobiologia. 2018. V. 68. P. 12–19. https://doi.org/10.1016/j.pedobi.2018.03.001

  12. Potapov M.B. Synopses on Palaearctic Collembola : Isotomidae // Abh. Berichte Naturkundemuseums Gorlitz. 2001. V. 73. P. 1–603.

  13. Kuznetsova N. Biotopic groups of Collembolans in the mixed forest subzone of Eastern Europe // Entomol Rev. 2002. V. 82. P. 1047–1057. https://doi.org/10.1134/S0013873810080014

  14. Petersen H., Krogh P.H. Effects of perturbing microarthropod communities of a permanent pasture and a ryefield by an insecticide and a fungicide // Soil Fauna and Soil Fertility, proc. 9th int. Coll. Soil zool., 1987. P. 217–229.

  15. Eitminaviciute I. Microarthropod communities in anthropogenic urban soils. 1. Structure of microarthropod complexes in soils of roadside lawns // Entomol. Rev. 2006. V. 86. S128–S135. https://doi.org/10.1134/S0013873806110029

  16. Winkler D., Bidló A., Bolodár-Varga B. et al. Long-term ecological effects of the red mud disaster in Hungary: Regeneration of red mud flooded areas in a contaminated industrial region // Sci. Total Environ. 2018. V. 644. P. 1292–1303. https://doi.org/10.1016/j.scitotenv.2018.07.059

  17. Buchholz J., Querner P., Paredes D. et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape // Sci. Rep. 2017. V. 7. 17445. https://doi.org/10.1038/s41598-017-17601-w

  18. Таранец И.П. Пространственное распределение почвенных коллембол в рекреационных лесах Подмосковья: Дис. … канд. биол. наук. М.: МГУ, 2013. P. 163.

  19. Hebert P.D.N., Ratnasingham S., Zakharov E.V. et al. Parisotoma notabilis L4 voucher BIOUG04875-G02 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial, NCBI. 2014. https://www.ncbi.nlm.nih.gov/nuccore/KM622110

  20. Porco D., Potapov M., Bedos A. et al. Cryptic diversity in the ubiquist species Parisotoma notabilis (Collembola, Isotomidae): a long-used chimeric species? // PLOS ONE. 2012. V. 7. e46056. https://doi.org/10.1371/journal.pone.0046056

  21. von Saltzwedel H., Scheu S., Schaefer I. Genetic structure and distribution of Parisotoma notabilis (Collembola) in Europe: Cryptic diversity, split of lineages and colonization patterns // PLOS ONE. 2017. V. 12. e0170909. https://doi.org/10.1371/journal.pone.0170909

  22. Striuchkova A., Malykh I., Potapov M., Kuznetsova N. Sympatry of genetic lineages of Parisotoma notabilis s. l. (Collembola, Isotomidae) in the East European Plain // ZooKeys. 2022. V. 1137. P. 1–15. https://doi.org/10.3897/zookeys.1137.95769

  23. Sun X., Bedos A., Deharveng L. Unusually low genetic divergence at COI barcode locus between two species of intertidal Thalassaphorura (Collembola: Onychiuridae) // Peer J. 2018. V. 6. e5021. https://doi.org/10.7717/peerj.5021

  24. Liker A., Papp Z., Bókony V., Lendvai Á.Z. Lean birds in the city: body size and condition of house sparrows along the urbanization gradient // J. Anim. Ecol. 2008. V. 77 P. 789–795. https://doi.org/10.1111/j.1365-2656.2008.01402.x

  25. QGIS (version 3.18.3). 2020. https://www.qgis.org/ ru/site/ (accessed December 26, 2022).

  26. Fjellberg A. The Collembola of Fennoscandia and Denmark, Part II: Entomobryomorpha and Symphypleona // BRILL. 2007. P. 266. https://brill.com/view/title/ 14147 (accessed September 27, 2022).

  27. Whiting M.F. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera // Zool. Scr. 2002. V. 31. P. 93–104. https://doi.org/10.1046/j.0300-3256.2001.00095.x

  28. Prendini L., Weygoldt P., Wheeler W.C. Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): Evidence from behaviour, morphology and DNA // Org. Divers. Evol. 2005. V. 5. P. 203–236. https://doi.org/10.1016/j.ode.2004.12.004

  29. Chromas Lite (version 2.6.6) | Technelysium Pty Ltd. 2018. http://technelysium.com.au/wp/chromas/ (accessed December 6, 2021).

  30. BioEdit (version 7.2). Softw. Inf. 2017. http://bioedit.software.informer.com/ (accessed December 6, 2021).

  31. Kumar S., Stecher G., Li M. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. 1547.

  32. R Core Team. RStudio (version 4.2.1.). 2022. https://www.r-project.org/ (accessed October 10, 2022).

  33. Kuznetzova N.A. Collembolan guild structure as an indicator of tree plantation conditions in urban areas // Memorabilia Zoologica. 1994. V. 49. P. 197–205.

  34. Fujii S., Berg M.P., Cornelissen J.H.C. Living litter: dynamic trait spectra predict fauna composition // Trends Ecol. Evol. 2020. V. 35. P. 886–896. https://doi.org/10.1016/j.tree.2020.05.007

  35. Huang Y., Yesilonis I., Szlavecz K. Soil microarthropod communities of urban green spaces in Baltimore, Maryland, USA // Urban For. Urban Green. 2020. V. 53. 126676. https://doi.org/10.1016/j.ufug.2020.126676

  36. Mao Q., Huang G., Buyantuev A. et al. Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region, China // Ecol. Process. 2014. V. 3. P. 23. https://doi.org/10.1186/s13717-014-0023-8

  37. Qiao Z., Wang B., Yao H. et al. Urbanization and greenspace type as determinants of species and functional composition of collembolan communities // Geoderma. 2022. V. 428. 116175. https://doi.org/10.1016/j.geoderma.2022.116175

Дополнительные материалы отсутствуют.