Электрохимия, 2023, T. 59, № 11, стр. 716-725

Электрохимическое фосфорилирование терминальных ацетиленов

М. В. Тарасов a*, В. В. Хризанфорова a, Т. В. Грязнова a, Ю. Г. Будникова a

a Институт органической и физической химии им. А.Е. Арбузова, ФИЦ Казанский научный центр
Казань, Россия

* E-mail: t.maxim1618@gmail.com

Поступила в редакцию 29.11.2022
После доработки 15.03.2023
Принята к публикации 21.03.2023

Аннотация

Электрокаталитическое фосфорилирование терминальных ацетиленов диарилфосфиноксидами в присутствии катализатора bpyCo(BF4)2 впервые реализовано в условиях электровосстановления с выходами целевых продуктов до 75%. Природа растворителя и фонового электролита, присутствие кислорода и воды определяют образование насыщенных и ненасыщенных продуктов фосфорилирования ацетиленов. Варьирование вышеописанных факторов осуществлялось с целью оптимизации процесса электросинтеза для достижения стерео- и хемоселективности. Вольтамперометрические исследования использовали для установления редокс-свойств реагентов для понимания процессов с участием кобальтового катализатора.

Ключевые слова: терминальный ацетилен, диарилфосфиноксид, кобальтовый катализатор, электролиз, электрохимическое восстановление, циклическая вольтамперометрия

Список литературы

  1. Zhao, Y.-L., Wu, G.-J., Li, Y., Gao, L.-X., & Han, F.-S., [NiCl2(dppp)]-Catalyzed Cross-Coupling of Aryl Halides with Dialkyl Phosphite, Diphenylphosphine Oxide, and Diphenylphosphine, Chemistry – A Europ. J., 2012, vol. 18, no. 31, p. 9622.

  2. Hamel, M., Lecinq, M., Gulea, M., & Kozelka, J., Ortho-(methylsulfanyl)phenylphosphonates and derivatives: Synthesis and applications as mono- or bidentate ligands for the preparation of platinum complexes, J. Organometallic Chem., 2013, vol. 745–746, p. 206.

  3. Snee, P.T., Somers, R.C., Nair, G., Zimmer, J.P., Bawendi, M.G., & Nocera, D.G., A Ratiometric CdSe/ZnS Nanocrystal pH Sensor, J. Amer. Chem. Soc., 2006, vol. 128, no.41, p. 13320.

  4. Paine, R.T., Bond, E.M., Parveen, S., Donhart, N., Duesler, E.N., Smith, K.A., & Nöth, H., Synthesis and Coordination Properties of 1-(Diphenylphosphine oxide)-1-(2'-pyridylN-oxide)-3-(diphenylphosphine oxide)propane, Inorganic Chem., 2002, vol. 41, no. 2, p. 444.

  5. Alguacil, F.J. and Alonso, M., Transport of cadmium from a mixture of HCl and H3PO4 using phosphine oxides (Cyanex 921 and Cyanex 923) as carriers: the influence of the membrane diluents (Exxsol D100 and Solvesso 100), Hydrometallurgy, 2002, vol. 74, no. 3–4, p. 195.

  6. Khrizanforova, V., Khrizanforov, M., Gryaznova, T., and Budnikova, Y., Electrochemical Approaches to Phenylphosphine Oxide Derivatives Synthesis, ECS Transactions, 2016, vol. 72, no. 29, p. 35.

  7. Dvorko, M.Y., Glotova, T.E., Ushakov, I.A., and Gusarova, N.K., Reaction of secondary phosphine oxides with acylacetylenes, Russ. J. Organic Chem., 2010, vol. 46, no. 4, p. 485.

  8. Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y., Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends in Biotechnol., 2011, vol. 29, no. 5, p. 205.

  9. Subhan, M. A., Hasegawa, Y., Suzuki, T., Kaizaki, S., and Shozo, Y., Remarkable chiral and luminescent properties of novel Yb(III) and Eu(III) complexes containing BINAPO ligand, Inorganica Chim. Acta, 2009, vol. 362, no. 1, p. 136.

  10. Hayashi, Y., Matano, Y., Suda, K., Kimura, Y., Nakao, Y., and Imahori, H., Synthesis and Structure-Property Relationships of 2,2-Bis(benzo[b]phosphole) and 2,2-Benzo[b]phosphole-Benzo[b]heterole Hybrid π-Systems, Chemistry – A Europ. J., 2012, vol. 18, no. 50, p. 15972.

  11. Shen, Y., Zheng, J., Xin, Y., Lin, Y., & Qi, M., Synthesis of perfluoroalkylated heterocyclic phosphonates, J. Chem. Soc., Perkin Transactions 1, 1995, no. 8, p. 997.

  12. Ruder, S.M. and Norwood, B.K., Cycloaddition of Enamines with Alkynylphosphonates. A Route to Functionalized Medium Sized Rings, Tetrahedron Lett., 1994, vol. 35, p. 3473.

  13. Lecerclé, D., Sawicki, M., and Taran, F., Phosphine-Catalyzed α-P-Addition on Activated Alkynes: A New Route to P−C−P Backbones, Organic Letters, 2006, vol. 8, no. 19, p. 4283.

  14. Syam Prasad, G., Manjunath, M., Kishore Kumar Reddy, K.R., Sarathi Reddy, O.V., and Suresh Reddy, C., Synthesis and antibacterial activity of new aryl/alkyl phosphonates via Michaelis-Arbuzov rearrangement, ARKIVOC, 2006, vol. 16, p. 128.

  15. Meziane, D., Hardouin, J., Elias, A., Guenin, E., and Lecouvey, M., Microwave Michaelis-Becker synthesis of diethyl phosphonates, tetraethyl diphosphonates, and their total or partial dealkylation, Heteroatom Chem., 2009, vol. 20, no. 6, p. 369.

  16. Vu, A. P., Shaffer, E. A., Byington Congiardo, L. K., and Knight, D. A., The Michaelis–Becker Reaction in Phosphonium and Imidazolium Ionic Liquids, Phosphorus, Sulfur, and Silicon and the Related Elements, 2010, vol. 185, no. 9, p. 1845.

  17. Gao, Y., Wang, G., Chen, L., Xu, P., Zhao, Y., Zhou, Y., & Han, L.-B., Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with H-Phosphonates Leading to Alkynylphosphonates, J. Amer. Chem. Soc., 2009, vol.131, no. 23, p. 7956.

  18. Gulykina, N.S., Dolgina, T.M., Bondarenko, G.N., & Beletskaya, I.P., Hydrophosphorylation of Terminal Alkynes Catalyzed by Palladium, Russ. J. Organic Chem., 2003, vol. 39, no. 6, p. 797.

  19. Zhang, H., Zhang, X.-Y., Dong, D.-Q., and Wang, Z.-L., Copper-catalyzed cross-coupling reactions for C–P bond formation, RSC Advances, 2015, vol. 5, no. 65, p. 52824.

  20. Didehban, K., Vessally, E., Hosseinian, A., Edjlali, L., and Khosroshahi, E. S., Nanocatalysts for C–Se cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 1, p. 291.

  21. Nejati, K., Ahmadi, S., Nikpassand, M., Kheirollahi Nezhad, P. D., and Vessally, E., Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 34, p. 19125.

  22. Hosseinian, A., Mohammadi, R., Ahmadi, S., Monfared, A., and Rahmani, Z., Arylhydrazines: novel and versatile electrophilic partners in cross-coupling reactions, RSC Advances, 2018, vol. 8, no. 59, p. 33828.

  23. Zhang, J.-Q., Chen, T., Zhang, J.-S., & Han, L.-B., Silver-Free Direct Synthesis of Alkynylphosphine Oxides via spC–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium, Organic Letters, 2017, vol. 19, no. 17, p. 4692.

  24. Orita, A., Otera, J., Yang, X., Matsuo, D., Suzuma, Y., Fang, J.-K., and Hara, K., Ph2P(O) Group for Protection of Terminal Acetylenes, Synlett, 2011, no. 16, p. 2402.

  25. Yang, J., Chen, T., Zhou, Y., Yin, S.-F., and Han, L.-B., Mechanistic Studies on the Palladium-Catalyzed Cross Dehydrogenative Coupling of P(O)–H Compounds with Terminal Alkynes: Stereochemistry and Reactive Intermediates, Organometallics, 2015, vol. 34, no. 20, p. 5095.

  26. Liu, L., Wu, Y., Wang, Z., Zhu, J., and Zhao, Y., Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study, J. Organic Chem., 2014, vol. 79, no. 15, p. 6816.

  27. Chen, X., Li, X., Chen, X.-L., Qu, L.-B., Chen, J.-Y., Sun, K., and Zhao, Y.-F., A one-pot strategy to synthesize β-ketophosphonates: silver/copper catalyzed direct oxyphosphorylation of alkynes with H-phosphonates and oxygen in the air, Chem. Commun., 2015, vol. 51, no. 18, p. 3846.

  28. Zhang, J.-S., Zhang, J.-Q., Chen, T., and Han, L.-B., t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides, Organic & Biomolec. Chem., 2017, vol. 15, no. 26, p. 5462.

  29. Будникова, Ю.Г., Кафиятуллина, А.Г., Каргин, Ю.М., Синяшин, О.Г. Металлокомплексный катализ в органическом электросинтезе. Электрокаталитическое восстановление органических галогенидов под действием комплекса кобальта с 2,2'-бипиридилом. ЖОХ. 2000. Т. 70. Вып. 9. С. 1538.

  30. Будникова, Ю.Г., Кафиятуллина, А.Г., Каргин, Ю.М., Синяшин, О.Г. Кинетические закономерности электрохимического восстановления органических галогенидов под действием комплексов кобальта с 2,2'-бипиридилом. ЖОХ. 2001. Т. 71. Вып. 2. С. 258.

  31. Будникова, Ю.Г., Кафиятуллина, А.Г., Каргин, Ю.М., Синяшин, О.Г. Электро-каталитическое восстановление органических галогенидов под действием комплекса кобальта с 2,2'-бипиридилом. Изв. Акад. наук. 2002. Т. 51. № 9. С. 1562.

  32. Будникова, Ю.Г., Кафиятуллина, А.Г., Каргин, Ю.М., Синяшин, О.Г. Электро-химическое восстановление комплексов кобальта и никеля c лигандами, стабилизирующими металл в низкой степени окисления. Изв. Акад. наук. 2003. Т. 52. № 7. С. 1423.

  33. Zhang, J.-Q., Chen, T., Zhang, J.-S., and Han, L.-B., Silver-Free Direct Synthesis of Alkynylphosphine Oxides via spC–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium, Organic Lett., 2017, vol. 19, no. 17, p. 4692.

  34. Zhang, P., Zhang, L., Gao, Y., Xu, J., Fang, H., Tang, G., & Zhao, Y., Copper-catalyzed tandem phosphination–decarboxylation–oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides, Chem. Commun., 2015, vol. 51, no. 37, p.7839.

  35. Gulyukina, N.S., Dolgina, T.M., Bondarenko, G.N., Beletskaya, I.P., Bondarenko, N.A., Anri, Zh.-K., Lavern’, D., Ratovelomanana-Vidal’, V., and Zhene, Zh.-P, Hydrophosphorylation of Terminal Alkynes Catalyzed by Palladium, Zh. Org. Khim. 2003, vol.38, p. 600.

  36. Yang, J., Chen T, Zhou Y, Yin S, and Han L-B., Palladium-Catalyzed Dehydrogenative Coupling of Terminal Alkynes with Secondary Phosphine Oxides, Chem. Commun., 2015, vol. 51, p. 3549.

  37. Hu, G., Zhang, Y., Su, J., Li, Z., Gao, Y., and Zhao, Y., Ag-mediated cascade decarboxylative coupling and annulation: a convenient route to 2-phosphinobenzo[b]phosphole oxides, Organic & Biomolec. Chem., 2015, vol. 13, no. 30, p. 8221.

  38. Zhang, J.-S., Zhang, J.-Q., Chen, T., and Han, L.-B., t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides, Organic & Biomolec. Chem., 2017, vol. 15, no. 26, p. 5462.

  39. Kirk – Othmer encyclopedia, 3 ed., vol. 1, N. Y., 1978, p. 192–193.

  40. Zeng, Y.-F., Tan, D.-H., Lv, W.-X., Li, Q., and Wang, H., Silver-Catalyzed Aerobic Oxidative Decarboxylative Coupling of Arylpropiolic Acids with H-Phosphine Oxides: Mild and Facile Synthesis of β-Oxophosphine Oxides, Europ. J. Organic Chem., 2015, vol. 20, p. 4335.

  41. Budnikova, Y.H., Dolengovsky, E.L., Tarasov, M.V., and Gryaznova, T.V., Recent advances in electrochemical C–H phosphorylation, Front. Chem., 2022, vol. 10, p. 1054116.

  42. Gryaznova, T.V., Nikanshina, E.O., Fayzullin, R.R., Islfmov, D.R., Tarasov, M.V., Kholin, K.V., and Budnikova, Y.H., EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine, Electrochim. Acta, 2022, vol. 428, p. 140946.

  43. Yurko, E.O., Gryaznova, T.V., Kholin, K.V., Khrizanforova, V.V., and Budnikova, Y.H., External oxidant-free cross-coupling: Electrochemically induced aromatic C–H phosphonation of azoles with dialkyl-: H-phosphonates under silver catalysis, Dalton Transactions, 2018, vol. 47, no. 1, p. 190.

  44. Khrizanforova, V.V., Kholin, K.V., Khrizanforov, M.N., Kadirov, M.K., and Budnikova, Y.H., Electrooxidative CH/PH functionalization as a novel way to synthesize benzo[: B] phosphole oxides mediated by catalytic amounts of silver acetate, New J. Chem., 2018, vol. 42, no. 2, p. 930.

  45. Hongjie, R., Ling-Guo, Me., Hailong, Xu, Yuqing, L., and Lei, W., Additive-free coupling of bromoalkynes with secondary phosphine oxides to generate alkynylphosphine oxides in acetic anhydride, Organic and Biomolec. Chem., 2020, vol. 18, no. 6, p. 1087.

  46. Jia, Y., Tieqiao, C., Yongbo, Z., Shuangfeng, Y., and Li-Biao, H., Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides, Chem. Commun., 2015, vol. 51, no.17, p. 3549.

  47. Guo, H., Yoshimura, A., Chen, T., Saga, Y., and Han, L.-B., Air-induced double addition of P(O)–H bonds to alkynes: a clean and practical method for the preparation of 1,2-bisphosphorylethanes, Green Chem., 2017, vol. 19(6), p. 1502.

  48. Khachatryan, R.A., Sayadyan, S.V., Grigoryan, N.Yu., and Indzhikyan, M.G., Synthesis of tetriary phosphines and phosphine oxides by nucleophilic addition reactions using interfacial catalysts or superbasic media, J. general chem. USSR, 1988, vol. 58, no. 11, p. 2197.

  49. Juhász, K., Varga, B., Bagi, P., and Hell, Z., Heterogeneous Catalytic Method for the Copper(II)-Catalysed Addition of H-Phosphinates and Secondary Phosphine Oxides to Phenylacetylene, Catal. Lett., 2022, vol. 152, p. 1100.

  50. Liu, B., Song, Q., Liu, Z., and Wang, Z., Silver-Catalyzed Oxyphosphorylation of Unactivated Alkynes, Adv. Synth.Catal., 2021, vol. 363, p. 3214.

Дополнительные материалы отсутствуют.