Электрохимия, 2023, T. 59, № 11, стр. 707-715

Электрохимический синтез гибридных материалов на основе полиэлектролитных комплексов хитозана и исследование их физико-химических свойств

А. В. Храменкова a*, Д. Н. Изварина a**, В. И. Мишуров b, А. А. Шершакова c, М. А. Кириленко c, О. Ю. Кузнецов c

a Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова
Новочеркасск, Россия

b Донской государственный технический университет
Ростов-на-Дону, Россия

c Ивановская государственная медицинская академия
Иваново, Россия

* E-mail: anna.vl7@yandex.ru
** E-mail: ariskina.daria@mail.ru

Поступила в редакцию 23.11.2022
После доработки 06.03.2023
Принята к публикации 21.03.2023

Аннотация

Проведено исследование морфологии, структуры и элементного состава гибридных материалов на поверхности нержавеющей стали на основе полиэлектролитных комплексов хитозана с оксидами кобальта и никеля, полученных с помощью переменного асимметричного тока. Методом рентгенофазового анализа установлено, что основной фазой полученных гибридных материалов является гидроксиизоцианат кобальта. Показана перспективность использования полученных гибридных материалов в качестве электродных для суперконденсаторов с щелочным электролитом, при этом его удельная емкость при плотности тока 1 А г–1 достигает 479 Ф г–1. Определена антибактериальная активность гибридных материалов в отношении грамположительных (S. aureus) и грамотрицательных (E. coli) микроорганизмов. Проведено исследование коррозионно-защитных свойств разработанных гибридных материалов в растворе 3.5 мас. % NaCl, показано, что для гибридного материала потенциал коррозии сдвинут в область положительных значений по сравнению с чистой сталью.

Ключевые слова: нестационарный электролиз, гибридные электродные материалы, антибактериальная активность, защита от коррозии

Список литературы

  1. Kickelbick, G. and Schubert, U., Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators, Monatshefte für Chemie/Chemical Monthly, 2001, vol. 132, p. 13.

  2. Choudhary, N., Islam, M.A., Kim, J.H., Ko, T.J., Schropp, A., Hurtado, L., Weitzman, D., Zhai, L., and Jung, Y., Two-dimensional transition metal dichalcogenide hybrid materials for energy applications, Nano Today, 2018, vol. 19, p. 16.

  3. Shinde, V., Uthayakumar, M., and Karthick, R., Self-assembled cobalt hydroxide micro flowers from nanopetals: Structural, fractal analysis and molecular docking study, Surfaces and Interfaces, 2022, vol. 32, p. 102163.

  4. Yao, S., Jiao, Y., Lv, C., Kong, Y., Ramakrishna, S., and Chen, G., Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis, J. Colloid and Interface Sci., 2022, vol. 623, p. 1111.

  5. Pandey, U., Singh, A.K., and Sharma, C., Development of anti-corrosive novel nickel-graphene oxide-polypyrrole composite coatings on mild steel employing electrodeposition technique, Synthetic Metal, 2022, vol. 290. p. 117135.

  6. Vijeth, H., Ashokkumar, S.P., Yesappa, L., Vandana, M., and Devendrappa, H., Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application, Electrochim. Acta, 2020, vol. 354, p. 136651.

  7. Aguilera, L., Leyet, Y., Almeida, A., Moreira, J.A., de la Cruz, J.P., Milán-Garcés, E.A., and Pocrifka, L.A., Electrochemical preparation of Ni(OH)2/CoOOH bilayer films for application in energy storage devices, J. Alloys and Compounds, 2021, vol. 874, p. 159858.

  8. Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Zabermawi, N.M., Arif, M., Batiha, G.E., Khafaga, A.F., Abd El-Hakim, Y.M., and Al-Sagheer, A.A., Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Intern. J. Biol. Macromol., 2020, vol. 164, p. 2726.

  9. Roy, B.K., Tahmid, I., and Rashid, T.U., Chitosan-based materials for supercapacitor application-a review, J. Mater. Chem. A, 2021, vol. 9, p. 17592.

  10. Adewuyi, S., Kareem, K.T., Atayese, A.O., Amolegbe, S.A., and Akinremi, C.A., Chitosan–cobalt(II) and nickel(II) chelates as antibacterial agents, Intern. J. Biol. Macromol., 2011, vol. 48, p. 301.

  11. Yang, S.F., Wen, Y., Yi, P., Xiao, K., and Dong, C.F., Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Intern. J. Minerals, Metallurgy, and Materials, 2017, vol. 24, p. 1260.

  12. Catauro, M., Tranquillo, E., Barrino, F., Blanco, I., Dal Poggetto, F., and Naviglio, D., Drug release of hybrid materials containing Fe(II) citrate synthesized by sol-gel technique, Materials, 2018, vol. 11, p. 2270.

  13. Ebisike, K., Okoronkwo, A.E., and Alaneme, K.K., Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method, J. King Saud Univer.-Sci., 2020, vol. 32, p. 550.

  14. Lei, Q., Guo, J., Noureddine, A., Wang, A., Wuttke, S., Brinker, C.J., and Zhu, W., Sol–gel-based advanced porous silica materials for biomedical applications, Adv. Functional Mater., 2020, vol. 30, p. 1909539.

  15. Mbugua, N.S., Kang, M., Zhang, Y., Ndiithi, N.J., Bertrand, G.V., and Yao, L., Electrochemical deposition of Ni, NiCo alloy and NiCo–ceramic composite coatings—A critical review, Materials, 2020, vol. 13, p. 3475.

  16. Gyftou, P., Pavlatou, E., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surface Sci., 2008, vol. 254, p. 5910.

  17. Khramenkova, A.V., Moshchenko, V.V., Yakovenko, A.A., Pushnitsa, K.A., Pavlovskii, A.A., and Maximov, M.Y., Synthesis, structure investigation and future prospects of transition metal oxides/carbon cloth hybrids as flexible binder-free anode materials for lithium-ion batteries, Mater. Lett., 2022, vol. 329, p. 133250.

  18. Khramenkova, A.V., Ariskina, D.N., Polozhentsev, O.E., Lyatun, I.I., Kuznetsov, D.M., and Yatsenko, E.A., Hybrid polymer-oxide materials formed by non-stationary electrolysis as catalysts for hydrogen peroxide decomposition, Composite Interfaces, 2022, vol. 29, p. 1229.

  19. Khramenkova, A.V., Ariskina, D.N., Moshchenko, V.V., and Polozhentsev, O.E., Study of the structure of hybrid coatings on the surface of stainless steel obtained using an alternating asymmetric current, J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2022, vol. 16, p. 682.

  20. Храменкова, А.В., Изварина, Д.Н., Шершакова, А.А., Кириленко, М.А., Кузнецов, О.Ю. Электрохимическое получение гибридных покрытий на основе оксидов кобальта, никеля и хитозана и исследование их функциональных свойств. Гальванотехника и обработка поверхности. 2022. № 30 (3). С. 57. [Khramenkova, A.V., Izvarina, D.N., Shershakova, A.A., Kirilenko, M.A., and Kuznetsov, O.Yu., Electrochemical preparation of hybrid coatings based on cobalt nickel oxides and chitosan and investigation of their functional properties, Galvanotekhnika i Obrabotka Poverkhnosti (in Russian), 2022, no. 30 (3), р. 57.

  21. Ignatova, K. and Lilova, D., A study on the kinetics of the electrodeposition of Ni, Co and Ni–Co alloy in citrate electrolyte. Part 1: the kinetic study of the independent electrodeposition of Ni and Co, J. Chem. Technology and Metallurgy, 2015, vol. 50, p. 199.

  22. Schweckandt, D.S. and del Carmen Aguirre, M., Electrodeposition of Ni-Co alloys. Determination of properties to be used as coins, Procedia Mater. Sci., 2015, vol. 8, p. 91.

  23. Tiwari, N., Kadam, S., Ingole, R., and Kulkarni, S., Facile hydrothermal synthesis of ZnFe2O4 nanostructures for high-performance supercapacitor application, Ceram. Intern., 2022, vol. 48, p. 29478.

  24. Ghosh, D., Giri, S., and Das, C.K., Preparation of CTAB-assisted hexagonal platelet Co (OH)2/graphene hybrid composite as efficient supercapacitor electrode material, ACS Sustainable Chemistry & Engineering, 2013, vol. 1, p. 1135.

  25. Ji, W., Ji, J., Cui, X., Chen, J., Liu, D., Deng, H., and Fu, Q., Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors, Chem. Commun., 2015, vol. 51, p. 7669.

  26. Khalaj, M., Golkhatmi, S.Z., and Sedghi, A., High-performance supercapacitor electrode materials based on chemical co-precipitation synthesis of nickel oxide (NiO)/cobalt oxide (Co3O4)-intercalated graphene nanosheets binary nanocomposites, Diamond and Related Materials, 2021, vol. 114, p. 108313.

  27. Hussain, N., Yang, W., Dou, J., Chen, Y., Qian, Y., and Xu, L., Ultrathin mesoporous F-doped α-Ni(OH)2 nanosheets as an efficient electrode material for water splitting and supercapacitors, J. Mater. Chem. A, 2019, vol. 7, p. 9656.

  28. Zheng, L.Y. and Zhu, J.F., Study on antimicrobial activity of chitosan with different molecular weights, Carbohydrate polymers, 2003, vol. 54, p. 527.

  29. Fred, B. and Pearson Ralph, G. Mechanisms of inorganic reactions. N.Y.: Wiley, 1967.

  30. John, S., Joseph, A., Jose, A.J., and Narayana, B., Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes, Progress in Organic Coatings, 2015, vol. 84, p. 28.

  31. Беспалова, Ж.И., Храменкова, А.В. Исследование возможности получения каталитически активных оксидных соединений на твердом носителе методом нестационарного электролиза. Журн. прикл. химии. 2013. Т. 86. С. 578. [Bespalova, Zh.I. and Khramenkova, A.V., A study of the possibility of obtaining catalytically active oxide compounds on a solid support by transient electrolysis, Russ. J. Appl. Chem., 2013, vol. 86, р. 539.]

Дополнительные материалы отсутствуют.