Кристаллография, 2023, T. 68, № 5, стр. 817-825

Структура, микроструктура и свойства модифицированной керамики (Na,Sr)0.5Bi0.5TiO3

Г. М. Калева 1*, Е. Д. Политова 1, А. В. Мосунов 2, С. Ю. Стефанович 2, Т. С. Ильина 3, Д. А. Киселев 3, Н. В. Садовская 4

1 Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН
Москва, Россия

2 Московский государственный университет им. М.В. Ломоносова
Москва, Россия

3 Национальный исследовательский технологический университет “МИСиС”
Москва, Россия

4 Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН
Москва, Россия

* E-mail: kaleva@nifhi.ru

Поступила в редакцию 26.12.2022
После доработки 11.01.2023
Принята к публикации 11.01.2023

Аннотация

Методом твердофазного синтеза получены однофазные керамические образцы новых составов (Na1 –хSrх)0.5Bi0.5TiO3 (x = 0–0.5), в том числе модифицированные добавками оксидов SiO2 и ZnO, и изучены их кристаллическая структура, микроструктура, диэлектрические, нелинейные оптические и локальные пьезоэлектрические свойства. Установлены формирование фазы со структурой перовскита с псевдокубической элементарной ячейкой во всех синтезированных образцах и увеличение объема ячейки в результате частичного замещения катионов структуры перовскита. Выявлено снижение температуры сегнетоэлектрических фазовых переходов, подтвержденных методами диэлектрической спектроскопии и генерации второй гармоники лазерного излучения, в тетрагональную параэлектрическую фазу. Для синтезированных образцов в режиме переключения поляризации получены остаточные петли пьезоэлектрического гистерезиса, подтверждающие переключение сегнетоэлектрической поляризации.

Список литературы

  1. Gupta V., Sharma M., Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227. https://doi.org/10.1177/1045389X10381659

  2. Sodano H.A., Henry A., Inman D.J., Park G. // J. Intel. Mat. Sys. Str. 2005. V. 16. P. 799.

  3. Sodano H.A., Park G., Inman D.J. // Strain. 2004. V. 40. P. 49.

  4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985, 256 с.

  5. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Lett. 2005. V. 86. P. 262904.

  6. Viola G., Tian Y., Yu C. et al. // Prog. Mater. Sci. 2021. V. 122. P. 100837. https://doi.org/10.1016/j.pmatsci.2021.100

  7. Zheng T., Wu J., Xiao D., Zhu J. // Prog. Mater. Sci. 2018. V. 98. P. 552. https://doi.org/10.1016/j.pmatsci.2018.06.002

  8. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84. https://doi.org/10.1038/nature03028

  9. Takenaka T., Nagata H., Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787. https://doi.org/10.1143/JJAP.47.3787

  10. Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x

  11. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0

  12. Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x

  13. Смоленский Г.А., Исупов В.А., Аграновская А.И., Крайник Н.Н. // ФТТ. 1961. Т. 2. С. 2982.

  14. Vakhrushev S.B., Isupov V.A., Kvyatkovsky B.E. et al. // Ferroelectrics. 1985. V. 63. P. 153. https://doi.org/10.1080/00150198508221396

  15. Залесский В.Г., Полушина А.Д., Обозова Е.Д. и др. // Письма ЖЭТФ. 2017. Т. 105. № 3. С. 175. https://doi.org/10.7868/S0370274X17030092

  16. Hiruma Y., Nagata H., Takenaka T. // J. Appl. Phys. 2009. V. 105. P. 084112. https://doi.org/10.1063/1.3115409

  17. Chu B.-J., Chen D.-R., Li G.-R., Jin Q.-R. // J. Eur. Ceram. Soc. 2002. V. 22. P. 2115.

  18. Nagata H., Yoshida M., Makiuchi Y., Takenaka T. // Jpn. J. Appl. Phys. 2003. V. 42. Pt. 1. P. 7401. https://doi.org/10.1143/JJAP.42.7401

  19. Ringgaard M.E., Wurlitzer T. // J. Eur. Ceram. Soc. 2005. V. 25. P. 2701. https://doi.org/10.1016/j.jeurceramsoc.2005.03.126

  20. Zuo R., Fang X., Ye C. // Appl. Phys. Lett. 2007 V. 90. P. 092904. https://doi.org/10.1063/1.2710768

  21. Kounga A.B., Zhang S.T., Jo W. et al. // Appl. Phys. Lett. 2008. V. 92. P. 222902. https://doi.org/10.1063/1.2938064

  22. Xiao D.Q., Lin D.M., Zhu J.G., Yu P. // J. Electroceram. 2008. V. 21. P. 34. https://doi.org/10.1007/s10832-007-9087-5

  23. Li H., Liu Q., Zhou J. et al. // J. Eur. Ceram. Soc. 2016. V. 36. P. 2849.

  24. Acosta M., Schmitt L., Molina-Luna L. et al. // J. Am. Ceram. Soc. 2015. V. 98. P. 3405.

  25. Политова Е.Д., Калева Г.М., Голубко Н.В. и др. // Кристаллография. 2018. Т. 63. С. 288. https://doi.org/10.7868/S0023476118020212

  26. Coondoo Indrani Ferroelectrics. Shanghai: In Tech China, 2010. 450 p.

  27. Aksel E., Erdem E., Jakes P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 012903. https://doi.org/10.1063/1.3455888

  28. Steiner S., Seo I.-T., Ren P. et al. // J. Am. Ceram. Soc. 2019. V. 102. P. 5295.

  29. Ming L., Zhang H., Cook S.N. et al. // Chem. Mater. 2015. V. 27. P. 629.

  30. Jones G.O., Thomas P.A. // Acta Cryst. B. 2002. V. 58. P. 168. https://doi.org/10.1107/S0108768101020845

  31. Tan X., Cheng M., Frederick J. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4091.

  32. Политова Е.Д., Мосунов А.В., Стребков В.А и др. // Неорган. материалы. 2018. Т. 54. С. 784. https://doi.org/10.7868/S0002337X18070205

  33. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Ferroelectrics. 2020. V. 560. P. 48. https://doi.org/10.1080/00150193.2020.1722882

  34. Yang F., Wu P., Sinclair D. // Solid State Ionics. 2017. V. 299. P. 38.

  35. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielectrics. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042

  36. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984

  37. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56. https://doi.org/10.7868/S0207401X15090046

  38. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Хим. физика. 2018. Т. 37. № 1. С. 76. https://doi.org/10.7868/S0207401X18010065

  39. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798.

  40. Stefanovich S.Yu. // Europ. Conf. on Lasers and Elecrto-Optics (CLEO-Europe'94). Amsterdam. Abstracts. 1994. P. 249.

  41. Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. // Nanotechnology. 2013. V. 24. P. 159501. https://doi.org/10.1088/0957-4484/22/35/355705

  42. Bian J., Xue P., Zhu R. et al. // Appl. Mater. Today. 2020 V. 21. P. 100789. https://doi.org/10.1016/j.apmt.2020.100789

  43. Shvartsman V.V., Lupascu D.C. // J. Am. Ceram. Soc. 2012. V. 95. P. 1. https://doi.org/10.1111/j.1551-2916.2011.04952.x

  44. Lee H.J, Zhang S.H. // Lead-Free Piezoelectrics. N.Y.: Springer, 2012. P. 291. https://doi.org/10.1007/978-1-4419-9598-8_9

  45. Li X., Dong X., Wang F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 2221. https://doi.org/10.1016/j.jeurceramsoc.2021.12.028

  46. Li Q., Liu Y., Withers R.L. et al. // J. Appl. Phys. 2012. V. 112. P. 052006. https://doi.org/10.1063/1.4745979

  47. Kalinin S.V., Gruverman A., Bonnell D.A. // Appl. Phys. Lett. 2004. V. 85. P. 795. https://doi.org/10.1063/1.1775881

Дополнительные материалы отсутствуют.