Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2023, № 12, стр. 46-53

Микрополосковый кремниевый детектор для изучения быстропротекающих процессов на пучке синхротронного излучения

В. М. Аульченко a, А. А. Глушак acd, В. В. Жуланов a, А. Н. Журавлев ac, В. А. Киселев a, В. Н. Кудрявцев ab, П. А. Пиминов ac, В. М. Титов a, Л. И. Шехтман abd*

a Институт ядерной физики им. Г.И. Будкера СО РАН
630090 Новосибирск, Россия

b Новосибирский государственный университет
630090 Новосибирск, Россия

c Центр коллективного пользования “СКИФ” Института катализа им. Г.К. Борескова
630090 Новосибирск, Россия

d Томский государственный университет
634050 Томск, Россия

* E-mail: L.I.Shekhtman@inp.nsk.su

Поступила в редакцию 12.01.2023
После доработки 20.03.2023
Принята к публикации 20.03.2023

Аннотация

В статье описано текущее состояние разработки прототипа детектора для изучения быстропротекающих процессов (DIMEX) основанного на кремниевом микрополосковом сенсоре. Кремниевый микрополосковый сенсор изготовлен из кремния n-типа с p-имплантами в форме полосок. На полоски по всей длине нанесены алюминиевые контакты с площадками для микросварки на концах. Сигналы с полосок считываются с помощью специально разработанной для этого проекта интегральной схемы DMXS6A, которая содержит шесть регистрирующих электронных каналов со схемой компенсации темнового тока на входе, четырьмя интеграторами, 32 ячейками аналоговой памяти и аналоговым сдвиговым регистром. Каждая полоска сенсора соединена с охранным кольцом через резистор 400 Ом и со входом канала регистрации через резистор 100 кОм. Такой резистивный делитель на входе канала регистрации позволяет адаптировать динамический диапазон интегратора микросхемы регистрации к полному диапазону изменения потока фотонов в канале вывода синхротронного излучения № 8 накопителя ВЭПП-4М, оснащенного девятиполюсным вигглером с полем 1.95 Тл в качестве источника синхротронного излучения. Измерения динамического диапазона прототипа DIMEX-Si показали, что максимальный поток, который может быть зарегистрирован в линейном режиме, превышает 105 фотонов/канал от каждого сгустка электронов в накопителе. Также была продемонстрирована способность детектора регистрировать сигналы от сгустков, следующих через 55 нс в многосгустковом режиме, имитирующем работу строящегося в Новосибирской области источника синхротронного излучения поколения 4+ СКИФ, на котором планируется применять такой детектор.

Ключевые слова: быстропротекающие процессы, детонационные процессы, координатные детекторы, детекторы с временны́м разрешением, электронный канал регистрации, микрополосковый кремниевый детектор, специализированная интегральная схема, синхротронное излучение.

Список литературы

  1. Tolochko B.P., Kosov A.V., Evdokov O.V., Zhogin I.L., Ten K.A., Pruuel E.R., Shekchtman L.I., Aulchenko V.M., Zhulanov V.V., Piminov P.F., Nazmov V.P., Zolotarev K.V., Kulipanov G.N. // Phys. Procedia. 2016. V. 84. P. 427. https://www.doi.org/10.1016/j.phpro.2016.11.072

  2. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19. https://www.doi.org/10.1016/j.phpro.2016.11.005

  3. Aulchenko V.M., Zhulanov V.V., Kulipanov G.N., Ten K.A., Tolochko B.P., Shekhtman L.I. // Physics-Uspekhi. 2018. V. 61. № 6. P. 515. https://www.doi.org/10.3367/UFNe.2018.01.038339

  4. Aulchenko V., Papushev P., Ponomarev S., Shekhtman L., Zhulanov V. // J. Synchrotron Radiation. 2003. V. 10. № 5. P. 361. https://www.doi.org/10.1107/S0909049503009142

  5. Aulchenko V., Evdokov O., Ponomarev S., Shekhtman L., Ten K., Tolochko B., Zhogin I., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 513. Iss. 1–2. P. 388. https://www.doi.org/10.1016/j.nima.2003.08.067

  6. Aulchenko A., Zhulanov V., Shekhtman L., Tolochko B., Zhogin I., Evdokov O., Ten K. // Nuclear Nucl. Instrum. Methods Phys. Res. A. 2005. V. 543. Iss. 1. P. 350. https://www.doi.org/10.1016/j.nima.2005.01.254

  7. Aulchenko V.M., Evdokov O.V., Shekhtman L.I., Ten K.A., Tolochko B.P., Zhogin I.L., Zhulanov V.V. // J. Instrumentation. 2008. V. 3. № 5. P. P05005. https://www.doi.org/10.1088/1748-0221/3/05/P05005

  8. Aulchenko V.M., Evdokov O.V., Shekhtman L.I., Ten K.A., Tolochko B.P., Zhogin I.L., Zhulanov V.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. Iss. 1–2. P. 73. https://www.doi.org/10.1016/j.nima.2008.12.163

  9. Aulchenko V.M., Baru S.E., Evdokov O.V., Leonov V.V., Papushev P.A., Porosev V.V., Savinov G.A., Sharafutdinov M.R., Shekhtman L.I., Ten K.A., Titov V.M., Tolochko B.P., Vasiljev A.V., Zhogin I.L. // Nucl. Instrum. Methods Phys. Res. A. 2010. V. 623. Iss. 1. P. 600. https://www.doi.org/10.1016/j.nima.2010.03.083

  10. Ten K.A., Pruuel E.R., Merzhievsky L.A., Lukjanchikov L.A., Tolochko B.P., Zhogin I.L., Shekhtman L.I. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. Iss. 1. P. 160. https://www.doi.org/10.1016/j.nima.2008.12.192

  11. Titov V.M., Pruuél E.R., Ten K.A., Luk’yanchikov L.A., Merzhievskii L.A., Tolochko B.P., Zhulanov V.V., Shekhtman L.I. // Combustion, Explosion and Shock Waves. 2011. V. 47. № 6. P. 615. https://www.doi.org/10.1134/S0010508211060013

  12. Pruuel E.R., Ten K.A., Tolochko B.P., Merzhievskii L.A., Luk’yanchikov L.A., Aul’chenko V.M., Zhulanov V.V., Shekhtman L.I., Titov V.M. // Doklady Physics. 2013. V. 58. № 1. P. 24. https://www.doi.org/10.1134/S1028335813010035

  13. Ten K.A., Pruuel E.R., Kashkarov A.O., Rubtsov I.A., Antipov M.V., Georgievskaya A.B., Mikhailov A.L., Spirin I.A., Aulchenko V.M., Shekhtman L.I., Zhulanov V.V., Tolochko B.P. // Combustion, Explosion and Shock Waves. 2018. V. 54. № 5. P. 606. https://www.doi.org/10.1134/S0010508218050143

  14. Shekhtmana L.I., Aulchenko V.M., Kudryavtsev V.N., Kutovenko V.D., Titov V.M., Zhulanova V.V., Pruuel E.L., Ten K.A., Tolochko B.P. // Phys. Procedia. 2016. V. 84. P. 189. https://www.doi.org/10.1016/j.phpro.2016.11.033

  15. Aulchenko V., Pruuel E., Shekhtman L., Ten K., Tolochko B., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2017. V. 845. P. 169. https://www.doi.org/10.1016/j.nima.2016.05.096

  16. Shekhtman L.I., Aulchenko V.M., Zhulanov V.V., Kudashkin D.V. // Bull. RAS: Phys. 2019. V. 83. № 2. P. 220. https://www.doi.org/10.3103/S1062873819020254

  17. Shekhtman L., Aulchenko V., Kudryavtsev V., Kutovenko V., Titov V., Zhulanov V. // AIP Conf. Proc. 2020. V. 2299. Iss. 1. P. 050004. https://www.doi.org/10.1063/5.0030393

  18. Shekhtman L., Aulchenko V., Kudashkin D., Kudryavtsev V., Pruuel E., Ten K., Tolochko B., Zhulanov V. // Nucl. Instrum. Methods Phys. Res. A. 2020. V. 958. P. 162655. https://www.doi.org/10.1016/j.nima.2019.162655

  19. Aulchenko V.M., Shekhtman L.I., Zhulanov V.V. // Optoelectronics, Instrumentation and Data Processing. 2020. V. 56. P. 81. https://www.doi.org/10.3103/S8756699020010112

Дополнительные материалы отсутствуют.