Сенсорные системы, 2023, T. 37, № 4, стр. 285-300

Роль слуховой обратной связи в контроле голоса при нормальном и сниженном слухе

А. М. Луничкин 1*, К. С. Штин 1

1 Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии им. И.М. Сеченова Российской академии наук
194223 Санкт-Петербург, пр. Тореза, 44, Россия

* E-mail: BolverkDC@mail.ru

Поступила в редакцию 04.09.2023
После доработки 15.09.2023
Принята к публикации 25.09.2023

Аннотация

Контроль голоса и речи осуществляется совместной работой прямой и обратной связей. Прямая связь отвечает за активацию выученной артикуляторной программы, в то время как обратная связь предоставляет акустическую и сенсомоторную информацию о выполнении высказывания. Их совместная работа по контролю речи описывается моделью DIVA, в основе которой лежит осуществляемая нервными центрами регуляция слуховой информации и проприорецептивных сигналов относительно артикуляторных программ. Несоответствие сенсорной информации, поступающей по обратной связи с представлением акустического сигнала в слуховой коре, вызывает корректирующие команды. У овладевающих речью детей слуховая обратная связь необходима для правильного освоения артикуляционных навыков, т.е. для формирования прямой связи. По этой причине прелингвально оглохшие взрослые характеризуются значительными нарушениями артикуляции ввиду несформированности артикуляторных навыков. При постлингвальной глухоте сформированная ранее прямая связь сохраняется, что позволяет успешно произносить фонемы. Однако у людей с сенсоневральной тугоухостью ухудшается контроль фонации и артикуляции по механизму слуховой обратной связи, что выражается в увеличении громкости голоса, изменении спектральных характеристик речи и нестабильности голоса по частоте и амплитуде. Похожие речевые изменения обнаруживаются у здоровых дикторов в присутствии шума, маскирующего собственный голос говорящего (эффект Ломбарда). Речь в шуме характеризуется ростом интенсивности голоса, смещения спектральных характеристик в высокочастотную область и гиперартикуляцией. Такая речевая реорганизация представляет собой адаптацию голоса диктора к фоновому шуму, целью которой являются демаскировка голоса и восстановление слуховой обратной связи.

Ключевые слова: слухоречевое взаимодействие, слуховая обратная связь, речь, голос, эффект Ломбарда, хроническая сенсоневральная тугоухость, модель DIVA

Список литературы

  1. Андреева Н.Г., Куликов Г.А. Характеристика певческих гласных при разной частоте основного тона. Сенсорные системы. 2004. Т. 18. № 2. С. 172–179.

  2. Луничкин А.М., Андреева И.Г., Зайцева Л.Г., Гвоздева А.П., Огородникова Е.А. Изменение спектральных характеристик гласных звуков в русской речи на фоне шума. Акустический Журнал. 2023. Т. 69. №. 3. С. 340–350. https://doi.org/10.31857/S032079192110018X

  3. Штин К.С., Луничкин А.М., Гвоздева А.П., Голованова Л.Е., Андреева И.Г. Спектральные характеристики кардинальных гласных звуков как показатели слухоречевой обратной связи у пациентов с постлингвальной хронической сенсоневральной тугоухостью II и III степени. Российский физиологический журнал. 2023. Т. 109. № 4. С. 489–501. https://doi.org/10.31857/S0869813923040106

  4. Alghamdi N., Maddock S., Marxer R., Barker J., Brown G. A corpus of audio-visual Lombard speech with frontal and profile views. The Journal of the Acoustical Society of America. 2018. V. 143 (6). P. 523–529. https://doi.org/10.1121/1.5042758

  5. Amazi D.K., Garber S.R. The Lombard sign as a function of age and task. Journal of Speech, Language, and Hearing Research. 1982. V. 25 (4). P. 581–585. https://doi.org/10.1044/jshr.2504.581

  6. Anand S., Gutierrez D., Bottalico P. Acoustic-perceptual correlates of voice among steam train engineers: effects of noise and hearing protection. Journal of voice: official journal of the Voice Foundation. 2023. V. 37 (3). P. 366–373. https://doi.org/10.1016/j.jvoice.2021.01.006

  7. Bond Z., Moore T., Gable B. Acoustic–phonetic characteristics of speech produced in noise and while wearing an oxygen mask. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 907–912. https://doi.org/10.1121/1.397563

  8. Bottalico P. Lombard effect, ambient noise, and willingness to spend time and money in a restaurant. The Journal of the Acoustical Society of America. 2018. V. 144 (3). P. 209–214. https://doi.org/10.1121/1.5055018

  9. Bottalico P., Graetzer S., Hunter E.J. Effect of training and level of external auditory feedback on the singing voice: volume and quality. Journal of Voice. 2016. V. 30 (4). P. 434–442. https://doi.org/10.1016/j.jvoice.2015.05.010

  10. Bottalico P., Passione I., Graetzer S., Hunter E. Evaluation of the starting point of the Lombard effect. Acta Acustica United with Acustica. 2017. V. 103 (1). P. 169–172. https://doi.org/10.3813/AAA.919043

  11. Bottalico P., Piper R., Legner B. Lombard effect, intelligibility, ambient noise, and willingness to spend time and money in a restaurant amongst older adults. Scientific Reports. 2022. V. 12 (1). P. 1–9. https://doi.org/10.1038/s41598-022-10414-6

  12. Bouchard K., Chang, E. Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex. Journal of Neuroscience. 2014. V. 34 (38). P. 12662–12672. https://doi.org/10.1523/JNEUROSCI.1219-14.2014

  13. Bradlow A., Torretta G., Pisoni D. Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics. Speech Communication. 1996. V. 20. P. 255–272. https://doi.org/10.1016/S0167-6393(96)00063-5

  14. Campisi P., Low A., Papsin B., Mount R., Harrison R. Multidimensional voice program analysis in profoundly deaf children: quantifying frequency and amplitude control. Perceptual and Motor Skills. 2006. V. 103 (1). P. 40–50. https://doi.org/10.2466/pms.103.1.40-50

  15. Coelho A., Brasolotto A., Bahmad F. Development and validation of the protocol for the evaluation of voice in subjects with hearing impairment. Brazilian Journal of Otorhinolaryngology. 2019. V. 86 (6). P. 748–762. https://doi.org/10.1016/j.bjorl.2019.05.007

  16. Coelho A., Medved D., Brasolotto A. Hearing loss and Voice. In: Update on Hearing Loss. InTech. 2015. https://doi.org/10.5772/61217

  17. Cooke M., Lu Y. Spectral and temporal changes to speech produced in the presence of energetic and informational maskers. The Journal of the Acoustical Society of America. 2010. V. 128 (4). P. 2059–2069. https://doi.org/10.1121/1.3478775

  18. Das B., Chatterjee I., Kumar S. Laryngeal aerodynamics in children with hearing impairment versus age and height matched normal hearing peers. ISRN Otolaryngology. 2013. https://doi.org/10.1155/2013/394604

  19. Garnier M., Bailly L., Dohen M., Welby P., Lœvenbruck, H. An acoustic and articulatory study of Lombard speech: global effects on the utterance. https://hal.science/hal-00370947.html

  20. Garnier M., Dohen M., Loevenbruck H., Welby P., Bailly L. The Lombard Effect: a physiological reflex or a controlled intelligibility enhancement? https://hal.science/hal-00214307.html

  21. Garnier M., Henrich N. Speaking in noise: How does the Lombard effect improve acoustic contrasts between speech and ambient noise? Computer Speech & Language. 2014. V. 28 (2). P. 580–597. https://doi.org/10.1016/j.csl.2013.07.005

  22. Garnier M., Henrich N., Dubois D. Influence of sound immersion and communicative interaction on the Lombard effect. Journal of Speech, Language, and Hearing Research. 2010. V. 53 (3). P. 588–608. https://doi.org/10.1044/1092-4388(2009/08-0138)

  23. Garnier M., Ménard L., Alexandre B. Hyper-articulation in Lombard speech: An active communicative strategy to enhance visible speech cues? The Journal of the Acoustical Society of America. 2018. V. 144 (2). P. 1059–1074. https://doi.org/10.1121/1.5051321

  24. Gautam A., Naples J., Eliades S. Control of speech and voice in cochlear implant patients. The Laryngoscope. 2019. V. 129 (9). P. 2158–2163. https://doi.org/10.1002/lary.27787

  25. Gervain J., Mehler J. Speech perception and language acquisition in the first year of life. Annual Review of Psychology. 2010. V. 61. P. 191–218. https://doi.org/10.1146/annurev.psych.093008.100408

  26. Graven S., Brown J. Auditory development in the fetus and infant. Newborn and Infant Nursing Reviews; NAINR. 2008. V. 8 (4). P. 187–193. https://doi.org/10.1053/j.nainr.2008.10.010

  27. Guenter F. Neural control of speech. London, England, The MIT Press. 2016. 420 p.

  28. Guenther F. Speech sound acquisition, coarticulation and rate effects in a neural network model of speech production. Psychological Review. 1995. V. 102 (3). P. 594–621. https://doi.org/10.1037/0033-295x.102.3.594

  29. Guenther F., Ghosh S., Tourville J. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain & Language. 2006. V. 96 (3). P. 280–301. https://doi.org/10.1016/j.bandl.2005.06.001

  30. Guenther F., Vladusich T. A neural theory of speech acquisition and production. Journal of Neurolinguistics. 2012. V. 25 (5). P. 408–422. https://doi.org/10.1016/j.jneuroling.2009.08.006

  31. Hadley L., Brimijoin W., Whitmer W. Speech, movement, and gaze behaviours during dyadic conversation in noise. Scientific reports. 2019. V. 9 (1). P. 1–8. https://doi.org/10.1038/s41598-019-46416-0

  32. Hage S., Jürgens U., Ehret G. Audio–vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience. 2006. V. 23 (12). P. 3297–3308. https://doi.org/10.1111/j.1460-9568.2006.04835.x

  33. Hage S., Nieder A. Dual neural network model for the evolution of speech and language. Trends in neurosciences. 2016. V. 39 (12). P. 813–829. https://doi.org/10.1016/j.tins.2016.10.006

  34. Halfwerk W., Lea A., Guerra M., Page R., Ryan M. Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology and Sociobiology. 2006. V. 27. P. 669–676. https://doi.org/10.1093/beheco/arv204

  35. Hazan V., Baker R. Acoustic-phonetic characteristics of speech produced with communicative intent to counter adverse listening conditions. The Journal of the Acoustical Society of America. 2011. V. 130 (4). P. 2139–2152. https://doi.org/10.1121/1.3623753

  36. Hazan V., Markham D. Acoustic-phonetic correlates of talker intelligibility for adults and children. The Journal of the Acoustical Society of America. 2004. V. 116 (5). P. 3108–3118. https://doi.org/10.1121/1.1806826

  37. Higgins M., Carney A., Schulte L. Physiological assessment of speech and voice production of adults with hearing loss. Journal of Speech and Hearing Research. 1994. V. 37 (3). P. 510–521. https://doi.org/10.1044/jshr.3703.510

  38. Hocevar-Boltezar I., Vatovec J., Gros A., Zagri M. The influence of cochlear implantation on some voice parameters. International Journal of Pediatric Otorhinolaryngology. 2005. V. 69 (12). P. 1635–1640. https://doi.org/10.1016/j.ijporl.2005.03.045

  39. Holt D., Johnston C. Evidence of the Lombard effect in fishes. Behavioral Ecology and Sociobiology. 2014. V. 25. P. 819–826. https://doi.org/10.1093/beheco/aru028

  40. Hotchkin C., Parks S. The Lombard effect and other noise-induced vocal modifications: insight from mammalian communication systems. Biological Reviews. 2013. V. 88 (4). P. 809–824. https://doi.org/10.1111/brv.12026

  41. Huber J., Chandrasekaran B. Effects of increasing sound pressure level on lip and jaw movement parameters and consistency in young adults. Journal of Speech, Language, and Hearing Research. 2006. V. 49 (6). P. 1368. https://doi.org/10.1044/1092-4388(2006/098)

  42. Ito T., Ostry D. Somatosensory contribution to motor learning due to facial skin deformation. Journal of Neurophysiology. 2010. V. 104 (3). P. 1230–1238. https://doi.org/10.1152/jn.00199.2010

  43. Jokinen E., Remes U., Alku P. The use of read versus conversational Lombard speech in spectral tilt modeling for intelligibility enhancement in near-end noise conditions. Interspeech. 2016. P. 2771–2775. https://doi.org/10.21437/Interspeech.2016-143

  44. Junqua J. The Lombard reflex and its role on human listeners and automatic speech recognizers. The Journal of the Acoustical Society of America. 1993. V. 93. P. 510–524. https://doi.org/10.1121/1.405631

  45. Junqua J., Fincke S., Field K. The Lombard effect: A reflex to better communicate with others in noise. IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. 1999. V. 4. P. 2083–2086. https://doi.org/10.1109/ICASSP.1999.758343

  46. Keough D., Hawco C., Jones J. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience. 2013. V. 9. P. 14–25. https://doi.org/10.1186/1471-2202-14-25

  47. Kim J., Davis C., Vignali G., Hill H. A visual concomitant of the Lombard reflex. AVSP. 2005. P. 17–22.

  48. Kleczkowski P., Żak A., Król-Nowak A. Lombard effect in Polish speech and its comparison in English speech. Archives of Acoustics. 2017. V. 42 (4). P. 561–569. https://doi.org/10.1515/aoa-2017-0060

  49. Lam J., Tjaden K. Intelligibility of clear speech: Effect of instruction. Journal of Speech, Language, and Hearing Research. 2013. V. 56 (5). P. 1429–1440. https://doi.org/10.1044/1092-4388(2013/12-0335)

  50. Lane H., Tranel B. The Lombard sign and the role of hearing in speech. Journal of Speech and Hearing Research. 1971. V. 14 (4). P. 677–709. https://doi.org/10.1044/jshr.1404.677

  51. Larson C., Altman K., Liu H., Hain T. Interactions between auditory and somatosensory feedback for voice F0 control. Experimental Brain Research. 2008. V. 187 (4). P. 613–621. https://doi.org/10.1007/s00221-008-1330-z

  52. Lau P. The Lombard Effect as a communicative phenomenon. UC Berkeley PhonLab Annual Report. 2008. V. 4 (4). https://doi.org/10.5070/P719j8j0b6

  53. Lee G. Variability in voice fundamental frequency of sustained vowels in speakers with sensorineural hearing loss. Journal of Voice. 2012. V. 26 (1). P. 24–29. https://doi.org/10.1016/j.jvoice.2010.10.003

  54. Lee S., Potamianos A., Narayanan S. Acoustics of children’s speech: Developmental changes of temporal and spectral parameters. The Journal of the Acoustical Society of America. 1999. V. 105 (3). P. 1455–1468. https://doi.org/10.1121/1.426686

  55. Lee S., Yu J., Fang T., Lee G. Vocal fold nodules: a disorder of phonation organs or auditory feedback? Clinical Otolaryngology. 2019. V. 44 (6). P. 975–982. https://doi.org/10.1111/coa.13417

  56. Letowski T., Frank T., Caravella J. Acoustical properties of speech produced in noise presented through supra-aural earphones. Ear and Hearing. 1993. V. 14 (5). P. 332–338. https://doi.org/10.1097/00003446-199310000-00004

  57. Liberman A., Mattingly I. The motor theory of speech perception revised. Cognition. 1985. V. 21. P. 1–36. https://doi.org/10.1016/0010-0277(85)90021-6

  58. Lu Y., Cooke M. Speech production modifications produced by competing talkers, babble, and stationary noise. The Journal of the Acoustical Society of America. 2008. V. 124. P. 3261–3275. https://doi.org/10.1121/1.2990705

  59. Lu Y., Cooke M. Speech production modifications produced in the presence of low-pass and high-pass filtered noise. The Journal of the Acoustical Society of America. 2009. V. 126. P. 1495–1499. https://doi.org/10.1121/1.2990705

  60. Lu Y., Cooke M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Communication. 2009. V. 51. P. 1253–1262. https://doi.org/10.1016/j.specom.2009.07.002

  61. Luo J., Hage S.R., Moss C.F. The Lombard effect: from acoustics to neural mechanisms. Trends in neurosciences. 2018. V. 41 (12). P. 938–949. https://doi.org/10.1016/j.tins.2018.07.011

  62. Marcoux K., Ernestus M. Pitch in native and non-native Lombard speech. 19th International Congress of Phonetic Sciences. Australasian Speech Science and Technology Association Inc. 2019. P. 2605–2609.

  63. Matsumoto S., Akagi M. Variation of Formant Amplitude and Frequencies in Vowel Spectrum uttered under Various Noisy Environments. http://hdl.handle.net/10119/15772.html

  64. Meekings S., Evans S., Lavan N. Distinct neural systems recruited when speech production is modulated by different masking sounds. The Journal of the Acoustical Society of America. 2016. V. 140 (1). P. 8–19. https://doi.org/10.1121/1.4948587

  65. Meekings S., Scott S.K. Error in the superior temporal gyrus? A systematic review and activation likelihood estimation meta-analysis of speech production studies. J. Cogn. Neurosci. 2021. V. 33 (3). P. 422–444. https://doi.org/10.1162/jocn_a_01661

  66. Mermelstein P. Articulatory model for the study of speech production. The Journal of the Acoustical Society of America. 1973. V. 53 (4). P. 1070–1082. https://doi.org/10.1121/1.1913427

  67. Nonaka S., Takahashi R., Enomoto K. Lombard reflex during PAG-induced vocalization in decerebrate cats. Journal of Neuroscience Research. 1997. V. 29 (4). P. 283–289. https://doi.org/10.1016/S0168-0102(97)00097-7

  68. Patel R., Schell K.W. The Influence of Linguistic Content on the Lombard Effect. Journal of Speech, Language, and Hearing Research. 2008. V. 51. P. 209–220. https://doi.org/10.1044/1092-4388(2008/016)

  69. Perkell J. Five decades of research in speech motor control: what have we learned, and where should we go from here? Journal of Speech, Language, and Hearing Research. 2013. V. 56 (6). P. 1857–1874. https://doi.org/10.1044/1092-4388(2013/12-0382)

  70. Perkell J. Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics. 2012. V. 25. P. 382–407. https://doi.org/10.1016/j.jneuroling.2010.02.011

  71. Perrier P., Ostry D., Laboissière R. The equilibrium point hypothesis and its application to speech motor control. Journal of Speech and Hearing Research. 1996. V. 39 (2). P. 365–378. https://doi.org/10.1044/jshr.3902.365

  72. Pick H., Siegel G., Fox P., Garber S., Kearney J. Inhibiting the Lombard effect. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 894–900. https://doi.org/10.1121/1.397561

  73. Pittman A., Wiley T. Recognition of speech produced in noise. Journal of Speech, Language, and Hearing Research. 2001. V. 44 (3). P. 487–496. https://doi.org/10.1044/1092-4388(2001/038)

  74. Schenk B., Baumgartner W., Hamzavi J. Effect of the loss of auditory feedback on segmental parameters of vowels of postlingually deafened speakers. Auris Nasus Larynx. 2003. V. 30 (4). P. 333–339. https://doi.org/10.1016/s0385-8146(03)00093-2

  75. Schwartz J., Boë J., Vallée N., Abry C. The dispersion-focalization theory of vowel systems. Journal of Phonetics. 1997. V. 25. P. 255–286.

  76. Selleck M., Sataloff R. The impact of the auditory system on phonation: a review. Journal of Voice. 2014. V. 28 (6). P. 688–693. https://doi.org/10.1016/j.jvoice.2014.03.018

  77. Shen C., Cooke M., Janse E. Speaking in the presence of noise: Consistency of acoustic properties in clear-Lombard speech over time. The Journal of the Acoustical Society of America. 2023. V. 153 (4). P. 2165–2165. https://doi.org/10.1121/10.0017769

  78. Siegel G., Pick H., Olsen M., Sawin L. Auditory feedback on the regulation of vocal intensity of preschool children. Developmental Psychology. 1976. V. 12 (3). P. 255. https://doi.org/10.1037/0012-1649.12.3.255

  79. Šimko J., Beňuš Š., Vainio M. Hyperarticulation in Lombard speech: Global coordination of the jaw, lips and the tongue. The Journal of the Acoustical Society of America. 2016. V. 139 (1). P. 151–162. https://doi.org/10.1121/1.4939495

  80. Smith B., Kenney M., Hussain S. A longitudinal investigation of duration and temporal variability in children’s speech production. The Journal of the Acoustical Society of America. 1996. V. 99 (4). P. 2344–2349. https://doi.org/10.1121/1.415421

  81. Smith B., Sugarman M., Long S. Experimental manipulation of speaking rate for studying temporal variability in children’s speech. The Journal of the Acoustical Society of America. 1983. V. 74 (3). P. 744–749. https://doi.org/10.1121/1.389860

  82. Stathopoulos E., Duchan J., Sonnenmeier R., Bruce N. Intonation and pausing in deaf speech. Folia Phoniat. 1986. V. 38 (1). P. 1–12. https://doi.org/10.1159/000265814

  83. Stowe L., Golob E. Evidence that the Lombard effect is frequency-specific in humans. The Journal of the Acoustical Society of America. 2013. V. 134 (1). P. 640–647. https://doi.org/10.1121/1.4807645

  84. Summers W., Pisoni D., Bernacki R., Pedlow R., Stokes M. Effects of noise on speech production: Acoustic and perceptual analyses. The Journal of the Acoustical Society of America. 1988. V. 84 (3). P. 917–928. https://doi.org/10.1121/1.396660

  85. Svirsky M., Lane H., Perkell J., Wozniak J. Effects of short-term auditory deprivation on speech production in adult cochlear implant users. Journal of the Acoustical Society of America. 1992. V. 92 (3). P. 1284–1300. https://doi.org/10.1121/1.403923

  86. Szkiełkowska A., Myszel K. Acoustic voice parameters in hearing-impaired, school-aged children. Research study outcomes. Journal of Clinical Otorhinolaryngology. 2021. V. 3 (3). https://doi.org/10.31579/2692-9562/034

  87. Tang P., Xu Rattanasone N., Yuen I., Demuth K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech. The Journal of the Acoustical Society of America. 2017. V. 142 (2). P. 493–503. https://doi.org/10.1121/1.4995998

  88. Therrien A., Lyons J., Balasubramaniam R. Sensory attenuation of self-produced feedback: the lombard effect revisited. PLoS One. 2012. V. 7 (11). 11. P. 1–7. https://doi.org/10.1371/journal.pone.0049370

  89. Tonkinson S. The Lombard effect in choral singing. Journal of Voice. 1994. V. 8 (1). P. 24–29. https://doi.org/10.1016/S0892-1997(05)80316-9

  90. Tourville J., Guenther F. The DIVA model: a neural theory of speech acquisition and production. Language and cognitive processes. 2011. V. 26 (7). P. 952–981. https://doi.org/10.1080/01690960903498424

  91. Tourville J., Reilly K., Guenther F. Neural mechanisms underlying auditory feedback control of speech. NeuroImage. 2007. V. 39 (3). P. 1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054

  92. Ubrig M., Tsuji R., Weber R., Menezes M., Barrichelo V., Cunha M., Tsuji D., Goffi-Gomez M. The influence of auditory feedback and vocal rehabilitation on prelingual hearing-impaired individuals post cochlear implant. Journal of Voice. 2018. V. 33 (6). P. 1–9. https://doi.org/10.1016/j.jvoice.2018.07.004

  93. Vainio M., Aalto D., Suni A., Arnhold A., Raitio T., Seijo H., Järvikivi J., Alku P. Effect of noise type and level on focus related fundamental frequency changes. http://interspeech2012.org/accepted-abstract.html?id=952.html.

  94. Van Ngo T., Kubo R., Morikawa D., Akagi M. Acoustical analyses of tendencies of intelligibility in Lombard speech with different background noise levels. Journal of Signal Processing. 2017. V. 21 (4). P. 171–174. https://doi.org/10.2299/jsp.21.171

  95. Vance M., Stackhouse J., Wells B. Speech-production skills in children aged 3–7 years. International Journal of Language & Communication Disorders. 2005. V. 40 (1). P. 29–48. https://doi.org/10.1080/13682820410001716172

  96. Villacorta V., Perkell J., Guenther F. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception. Journal of the Acoustical Society of America. 2007. V. 122. P. 2306–2319. https://doi.org/10.1121/1.2773966

  97. Voelker C. A preliminary strobophotoscopic study of the speech of the deaf. American Annals of the Deaf. 1935. V. 80. P. 243–259.

  98. Wyke B. Laryngeal myotatic reflexes and phonation. Folia Phoniatr. 1974. V. 26 (4). P. 249–264. https://doi.org/10.1159/000263784

  99. Zamani P., Bayat A., Saki N., Ataee E., Bagheripour H. Post-lingual deaf adult cochlear implant users’ speech and voice characteristics: cochlear implant turned-on versus turned-off. Acta Oto-Laryngologica. 2021. V. 141 (4). P. 367–373. https://doi.org/10.1080/00016489.2020.1866778

  100. Zhao Y., Jurafsky D. The effect of lexical frequency and Lombard reflex on tone hyperarticulation. Journal of Phonetics. 2009. V. 37 (2). P. 231–247. https://doi.org/10.1016/j.wocn.2009.03.002

  101. Zollinger S.A., Brumm H. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour. 2011. V. 148 (11–13). P. 1173–1198. .https://doi.org/10.1163/000579511X605759

Дополнительные материалы отсутствуют.