Успехи современной биологии, 2023, T. 143, № 3, стр. 197-217

Динамика вирулентности комменсалов: упреждающая фенотипическая изменчивость

С. В. Чепур 1*, Н. Н. Плужников 1, С. А. Сайганов 2, О. В. Чубарь 1, Л. С. Бакулина 3, И. В. Литвиненко 4

1 Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Санкт-Петербург, Россия

2 Северо-Западный государственный медицинский университет им. И.И. Мечникова Минздрава России
Санкт-Петербург, Россия

3 Воронежская государственная медицинская академия им. акад. Н.Н. Бурденко
Воронеж, Россия

4 Военно-медицинская академия им. С.М. Кирова
Санкт-Петербург, Россия

* E-mail: gniiivm_2@mail.ru

Поступила в редакцию 29.01.2023
После доработки 02.02.2023
Принята к публикации 12.02.2023

Аннотация

Изложены особенности влияния цитокинов и метаболитов системной воспалительной реакции, стресс-реализующих и нутритивных факторов, способствующих трансформации фенотипа резидентной микрофлоры кишечника с повышением ее вирулентности. С позиции экспрессии генов, конформации белков и фосфолипидов рассмотрено влияние температуры как сигнального фактора в повышении вирулентности кишечного микробиома. Эволюционно сформированные механизмы экспрессии максимально патогенного фенотипа микроорганизмов и достижение, таким образом, увеличения их биомассы и максимальной диссеминации по биологическим средам макроорганизма повышает вероятность трансмиссии комменсалов в другой биотоп, то есть увеличивает вероятность их выживания после гибели организма-хозяина. Для профилактики бактериальной транслокации после купирования критических состояний обосновано раннее энтеральное введение β-глюканов в составе пищевых смесей, выведение железа, купирование дефицита неорганических фосфатов, в т.ч. посредством индукции синтеза щелочной фосфатазы.

Ключевые слова: микробиом, вирулентность, термосенсоры, бактериальная транслокация

Список литературы

  1. Андрусишина И.Н., Важничая Е.М., Донченко Е.А. и др. Средство для лечения перегрузки организма железом или гемахроматоза: патент RU2557959C1. Опуб. 27.07.2015. Бюл. № 21.

  2. Анохин П.К. Опережающее отражение действительности // Вопр. философии. 1962. № 7. С. 97–111.

  3. Анохин П.К. Теория отражения и современная наука о мозге. М.: Знание, 1970. 44 с.

  4. Бакулина Л.С., Литвиненко И.В., Накатис А.Я. и др. Сепсис: пожар и бунт на тонущем в шторм корабле. Монография в 3 ч. Ч. 3. Концепция патогенеза сепсиса и терапевтической стратегии профилактики/лечения септических состояний / Ред. Н.Н. Плужников, С.В. Чепур, О.Г. Хурцилава. СПб: СЗГМУ им. И.И. Мечникова, 2017. 272 с.

  5. Важничая Е.М., Боброва Н.А., Девяткина Т.А. и др. Влияние эмоксипина и мексидола на развитие культур эталонных штаммов микроорганизмов и их чувствительность к антимикробным средствам // Эксперим. и клин. фармакол. 2019. Т. 82 (2). С. 16–20.

  6. Васильев И.Т., Мумладзе Р.Б., Колесова О.Е., Якушин В.И. Клиническая эффективность мексидола при лечении острых хирургических заболеваний. URL: https://medi.ru/info/3024. Доступ 19.12.2022.

  7. Золотов Н.Н., Смирнов Л.Д., Кузьмина В.И. и др. Производные 3-оксипиридина как ингибиторы протеолитических ферментов // Хим.-фарм. журн. 1989. Т. 23 (2). С. 133–135.

  8. Колесова О.Е., Уханова Т.Ю. Антибактериальное средство: патент RU2157686C1. Опуб. 20.10.2000. Бюл. № 29.

  9. Лейдерман И.Н. Современная концепция нутритивной поддержки при критических состояниях. 5 ключевых проблем // Интенсив. тер. 2005. Т. 14 (1). С. 44–50.

  10. Пасечник И.Н. Нутритивная поддержка больных в критических состояниях (обзор) // Общая реаниматол. 2020. Т. 16 (4). С. 40–59.

  11. Сидоров С.П., Сергеев А.А., Чепур С.В. и др. Морфофункциональные изменения желудочно-кишечного тракта при интоксикации сернистым ипритом // Вестн. Урал. мед. акад. науки. 2022. Т. 19 (2). С. 142–162.

  12. Ходос О.А. Этилметилгидроксипиридина сукцинат и морфолиний 3-метил-1,2,4-триазолил-5-тиоацетат: влияние на протеолиз в сыворотке крови крыс // Фундам. исслед. 2014. № 5 (Ч. 6). С. 1229–1332.

  13. Чепур С.В., Плужников Н.Н., Чубарь О.В. и др. Купирование микроэкологического дисбаланса и барьерной дисфункции слизистой оболочки кишечника в терапевтической стратегии при угрожающих жизни состояниях // Обз. клин. фармакол. и лекар. терапии. 2020. Т. 16 (3). С. 197–212.

  14. Aberg K.M., Radek K.A., Choi E.H. et al. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice // J. Clin. Invest. 2007. V. 117 (11). P. 3339–3349.

  15. Abolbaghaei A., Silke J.R., Xia X. How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis // G3. 2017. V. 7 (5). P. 1607–1615.

  16. Achour L., Nancey S., Moussata D. et al. Faecal bacterial mass and energetic losses in healthy humans and patients with a short bowel syndrome // Eur. J. Clin. Nutr. 2007. V. 61 (2). P. 233–238.

  17. Agans R., Gordon A., Kramer D.L. et al. Dietary fatty acids sustain the growth of the human gut microbiota // Appl. Environ. Microbiol. 2018. V. 84 (21). Art. e01525-18.

  18. Ahern P.P., Maloy K.J. Understanding immune-microbiota interactions in the intestine // Immunology. 2020. V. 159 (1). P. 4–14.

  19. Ahlman H., Bhargava H.N., Dahlstrom A. et al. On the presence of serotonin in the gut lumen and possible release mechanisms // Acta Physiol. Scand. 1981. V. 112 (3). P. 263–269.

  20. Almeida A., Mitchell A.L., Boland M. et al. A new genomic blueprint of the human gut microbiota // Nature. 2019. V. 568 (7753). P. 499–504.

  21. Altshuler A.E., Kistler E.B., Schmid-Schönbein G.W. Autodigestion: proteolytic degradation and multiple organ failure in shock // Shock. 2016. V 45 (5). P. 483–489.

  22. Alverdy J.C., Krezalek M.A. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis // Crit. Care Med. 2017. V. 45 (2). P. 337–347.

  23. Alverdy J., HolBrook C., Rocha F. et al. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa // Ann. Surg. 2000. V. 232 (4). P. 480–489.

  24. Ambrosini Y.M., Borcherding D., Kanthasamy A. et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review // Front. Aging Neurosci. 2019. V. 11. Art. 130.

  25. Amedei A., Morbidelli L. Circulating metabolites originating from gut microbiota control endothelial cell function // Molecules. 2019. V. 24 (2). Art. 3992.

  26. Anderson G.J., Frazer D.M. Current understanding of iron homeostasis // Am. J. Clin. Nutr. 2017. V. 106. Suppl. 6. P. 1559S–1566S.

  27. Annane D. Adrenal insufficiency in sepsis // Curr. Pharm. Des. 2008. V. 14 (19). P. 1882–1886.

  28. Annane D. The role of ACTH and corticosteroids for sepsis and septic shock: an update // Front. Endocrinol. 2016. V. 7. Art. 70.

  29. Annane D., Maxime V., Ibrahim F. et al. Diagnosis of adrenal insufficiency in severe sepsis and septic shock // Am. J. Respir. Crit. Care Med. 2006. V. 174 (12). P. 1319–1326.

  30. Arena M.P., Caggianiello G., Fiocco D. et al. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria // Int. J. Mol. Sci. 2014. V. 15 (2). P. 3025–3039.

  31. DʼArgenio V., Salvatore F. The role of the gut microbiome in the healthy adult status // Clin. Chim. Acta. 2015. V. 451. Pt A. P. 97–102.

  32. Armando I., Lemoine A.P., Segura E.T., Barontini M.B. The stress-induced reduction in monoamine oxidase (MAO) A activity is reversed by benzodiazepines: role of peripheral benzodiazepine receptors // Cell. Mol. Neurobiol. 1993. V. 13 (6). P. 593–600.

  33. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome // Nature. 2011. V. 473 (7346). P. 174–180.

  34. Ataka K., Kuge T., Fujino K. et al. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats // Auton. Neurosci. 2007. V. 133 (2). P. 136–145.

  35. Atwal N., Winters L., Vaughan C.W. Endogenous cannabinoid modulation of restrain stress-induced analgesia in thermal nociception // J. Neurochem. 2020. V. 152 (1). P. 92–102.

  36. Babrowski T., Holbrook C., Moss J. et al. Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut-derived sepsis in mice during chronic morphine administration // Ann. Surg. 2012. V. 255 (2). P. 386–393.

  37. Backhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine // Science. 2005. V. 307 (5717). P. 1915–1920.

  38. Bajwa S.J., Gupta S. Controversies, principles and essentials of enteral and parenteral nutrition in critically ill-patients // J. Med. Nutr. Nutraceut. 2013. V. 2 (2). P. 77–83.

  39. Banerjee S., Sindberg G., Wang F. et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation // Mucosal. Immunol. 2016. V. 9 (6). P. 1418–1428.

  40. Banks W.A., Robinson S.M. Minimal penetration of lipopolysaccharide across the murine blood-brain barrier // Brain Behav. Immun. 2009. V. 24 (1). P. 102–109.

  41. Baquero F., Nombela C. The microbiome as a human organ // Clin. Microbiol. Infect. 2012. V. 18. Suppl. 4. P. 2–4.

  42. Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut // Nature. 2016. V. 545 (7610). P. 85–93.

  43. Bearson B.L. Molecular profiling: catecholamine modulation of gene expression in Escherichia coli O157:H7 and Salmonella enterica serovar typhimurium // Adv. Exp. Med. Biol. 2016. V. 874. P. 167–182.

  44. Beecher H.K. Generalization from pain of various types and diverse origin // Science. 1959. V. 130 (3370). P. 267–268.

  45. Belay T., Sonnenfeld G. Differential effects of catecholamines on in vitro growth of pathogenic bacteria // Life Sci. 2002. V. 71 (4). P. 447–456.

  46. Bellali S., Lagier J.C., Raoult D., Bou Khalil J. Among live and dead bacteria, the optimization of sample collection and processing remains essential in recovering gut microbiota components // Front. Microbiol. 2019. V. 10. Art. 1606.

  47. Berdy B., Spoering A.L., Ling L.I., Epstein S.S. In situ cultivation of previously uncultivable microorganisms using the ichip // Nat. Protoc. 2017. V. 12 (10). P. 2232–2242.

  48. Bergers G., Song S. The role of pericytes in blood-vessel formation and maintenance // Neuro-Oncol. 2005. V. 7 (4). P. 452–464.

  49. Biagi E., Candela M., Turroni S. et al. Ageing and gut microbes: perspectives for health maintenance and longevity // Pharmacol. Res. 2013. V. 69 (1). P. 11–20.

  50. Biagi E., Zama D., Nastasi C. et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT // Bone Marr. Transplant. 2015. V. 50 (7). P. 992–998.

  51. Bilski J., Mazur-Bialy A., Wojcik D. et al. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract // Mediat. Inflamm. 2017. V. 2017. Art. 9074601.

  52. Binder E.B., Nemeroff C.B. The CRF system, stress, depression and anxiety – insights from human genetic studies // Mol. Psych. 2010. V. 15 (6). P. 574–588.

  53. Binder S.C., Eckweiler D., Schulz S. et al. Functional modules of sigma factor regulons guarantee adaptability and evolvability // Sci. Rep. 2016. V. 6. Art. 22212.

  54. Bischoff M., Entenza J.M., Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus // J. Bacteriol. 2001. V. 183 (17). P. 5171–5179.

  55. Bland J. The gut mucosal firewall and functional medicine // Integr. Med. 2016. V. 15 (4). P. 19–22.

  56. Bodor A., Bounedjoum N., Vincze G.E. et al. Challenges of unculturable bacteria: environmental perspectives // Rev. Environ. Sci. Biotechnol. 2020. V. 19 (1). P. 1–22.

  57. Boleij A., Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer // Biol. Rev. Camb. Philos. Soc. 2012. V. 87 (3). P. 701–730.

  58. Brown E.M., Sadarangani M., Finlay B.B. The role of the immune system in governing host-microbe interactions in the intestine // Nat. Immunol. 2013. V. 14 (7). P. 660–667.

  59. Browne H.P., Forster S.C., Anonye B.O. et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation // Nature. 2016. V. 533 (7604). P. 543–546.

  60. Busnelli M., Mqanzini S., Chiesa G. The gut microbiota affects host pathophysiology as an endocrine organ: a focus on cardiovascular disease // Nutrients. 2019. V. 12 (1). Art. 79.

  61. Butler R.K., Finn D.P. Stress-induced analgesia // Prog. Neurobiol. 2009. V. 88 (3). P. 184–202.

  62. Cambronel M., Nilly F., Mesguida O. et al. Influence of catecholamines (epinephrine/norepinephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis // Front. Microbiol. 2020. V. 11. Art. 1501.

  63. Cao J., Papadopoulou N., Kempuraj D. et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor // J. Immunol. 2005. V. 174 (12). P. 7665–7675.

  64. Caputo F.J., Rupani B., Watkins A.C. et al. Pancreatic duct ligation abrogates the trauma hemorrhage-induced gut barrier failure and the subsequent production of biologically active intestinal lymph // Shock. 2007. V. 28 (4). P. 441–446.

  65. Cartwright K.A., Jones D.M., Smith A.J. et al. Influenza A and meningococcal disease // Lancet. 1991. V. 338 (8766). P. 554–557.

  66. Castagliuolo I., Lamont J.T., Qiu B. et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells // Am. J. Physiol. 1996. V. 271 (5). P. G884–G892.

  67. Cerqueira F.M., Photenhauer A.L., Pollet R.M. et al. Starch digestion by gut bacteria: crowdsourcing for carbs // Trends Microbiol. 2020. V. 28 (2). P. 95–108.

  68. Chan K.G., Priya K., Chang C.Y. et al. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures // Peer J. 2016. V. 4. Art. e2223.

  69. Chan P.F., Foster S.J. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus // J. Bacteriol. 1998. V. 180 (23). P. 6232–6241.

  70. Chang M., Alsaigh T., Kistler E.B., Schmid-Schönbein G.W. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine // PLoS One. 2012a. V. 7 (6). Art. e40087.

  71. Chang M., Kistler E.B., Schmid-Schönbein G.W. Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into intestinal wall // Shock. 2012b. V. 37 (3). P. 297–305.

  72. Chaniotou Z., Giannogonas P., Theoharis S. et al. Corticotropin-releasing factor regulates TLR4 expression in the colon and protects mice from colitis // Gastroenterology. 2010. V. 139 (6). P. 2083–2092.

  73. Chastanet A., Fert J., Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other gram-positive bacteria // Mol. Microbiol. 2003. V. 47 (4). P. 1061–1073.

  74. Chastanet A., Derre I., Nair S., Msadek T. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance // J. Bacteriol. 2004. V. 186 (4). P. 1165–1174.

  75. Chatoo M., Li Y., Ma Z. et al. Involvement of corticotropin-releasing factor and receptors in immune cells in irritable bowel syndrome // Front. Endocrinol. 2018. V. 9. Art. 21.

  76. Chekabab S.M., Harel J., Dozois C.M. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence // Virulence. 2014. V. 5 (8). P. 786–793.

  77. Cheng S.Y., Serova L.I., Sabban E.L. Immobilization stress elevates intron-containing transcripts for tyrosine hydroxylase in rat superior cervical ganglia indicating transcriptional activation // Stress. 2009. V. 12 (6). P. 544–548.

  78. Christensen H., May M., Bowen L. et al. Meningococcal carriage by age: a systematic review and meta-analysis // Lancet Infect. Dis. 2010. V. 10 (12). P. 853–861.

  79. Chrousos G.P. The stress response and immune function: clinical implications. The 1999 Novera H. Spector Lecture // Ann. N.Y. Acad. Sci. 2000. V. 917 (1). P. 38–67.

  80. Clarke G., Stilling R.M., Kennedy P.J. et al. Minireview: gut microbiota: the neglected endocrine organ // Mol. Endocrinol. 2014. V. 28 (8). P. 1221–1238.

  81. Coats S.R., Hashim A., Paramonov N.A. Cardiolipins act as a selective barrier to Toll-like receptor 4 activation in the intestine // Appl. Environ. Microbiol. 2016. V. 82 (14). P. 4264–4278.

  82. Cogan T.A., Thomas A.O., Rees L.E. et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni // Gut. 2007. V. 56 (8). P. 1060–1065.

  83. Cole R.I., Sawchenko P.E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus // J. Neurosci. 2002. V. 22 (3). P. 959–969.

  84. Collins J.F., Wessling-Resnick M., Knutson M.D. Hepcidin regulation of iron transport // J. Nutr. 2008. V. 138 (11). P. 2284–2288.

  85. Cooper E.V. Gas-gangrene following injection of adrenaline // Lancet. 1946. V. 247 (6396). P. 459–461.

  86. Costa M., Brookes S.J., Hennig G.W. Anatomy and physiology of the enteric nervous system // Gut. 2000. V. 47 Suppl. IV. P. iv15– iv19.

  87. Cross J.H., Bradbury R.S., Fulford A.J. et al. Oral iron acutely elevates bacterial growth in human serum // Sci. Rep. 2015. V. 5. P. 16670.

  88. Cryan J.F., OʼMahony S.M. The microbiome–gut–brain axis: from bowel to behavior // Neurogastroenterol. Motil. 2011. V. 23 (3). P. 187–192.

  89. Dahl W.J., Rivero Mendoza D., Lambert J.M. Diet, nutrients and the microbiome // Prog. Mol. Biol. Transl. Sci. 2020. V. 171. P. 237–263.

  90. Dame R.T., Wyman C., Goosen N. Structural basis for preferential binding of H-NS to curved DNA // Biochimie. 2001. V. 83 (2). P. 231–234.

  91. Da Silva S., Robbe-Masselot C., Ait-Belgnaoui A. et al. Stress disrupts mucus barrier in rat via mucin O-glycosylation shift: prevention by a probiotic treatment // Am. J. Physiol. Gastrointest. Liver Physiol. 2014. V. 307 (4). P. G420–G429.

  92. David L.A., Maurice C.F., Carmody R.N. et al. Diet rapidly and reproducibly alters the human gut microbiome // Nature. 2014. V. 505 (7484). P. 559–563.

  93. Delaloye J., Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient // Virulence. 2014. V. 5 (1). P. 161–169.

  94. Delory M., Hallez R., Letesson J.-J., De Bolle X. An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M // J. Bacteriol. 2006. V. 188 (21). P. 7707–7710.

  95. DeMorrow S. Role of the hypothalamic-pituitary-adrenal axis in health and disease // Int. J. Mol. Sci. 2018. V. 19 (4). Art. 986.

  96. Dethlefsen L., McFall-Ngai M., Relman D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease // Nature. 2007. V. 449 (7164). P. 811–818.

  97. Deussing J.M., Chen A. The corticotropin-releasing factor family: physiology of the stress response // Physiol. Rev. 2018. V. 98 (4). P. 2225–2286.

  98. Dickson R.P. The microbiome and critical illness // Lancet Respir. Med. 2016. V. 4 (1). P. 59–72.

  99. Dieterich K.D., Lehnert H., De Souza E.B. Corticotropin-releasing factor receptors: an overview // Exp. Clin. Endocrinol. Diabetes. 1997. V. 105 (2). P. 65–82.

  100. Dietert R. The human superorganism: how the microbiome is revolutionizing the pursuit of a healthy life. N.Y.: Penguin Random House, 2016. 341 p.

  101. Digel I. Primary thermosensory events in cells // Adv. Exp. Med. Biol. 2011. V. 704. P. 451–468.

  102. Dobrindt U., Hacker J. Regulation of tRNA5Leu-encoding gene leuX that is associated with a pathogenicity island in the uropathogenic Escherichia coli strain 536 // Mol. Genet. Genom. 2001. V. 265 (5). P. 895–904.

  103. Doig G.S., Heighes P.T., Simpson F. et al. Early enteral nutrition, provide within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomized controlled trials // Intens. Care Med. 2009. V. 35 (12). P. 2018–2027.

  104. Dorman C.J., Dorman M.J. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression // Biophys. Rev. 2016. V. 8. P. 209–220.

  105. Dowd S.E. Escherichia coli 0157:H7 gene expression in the presence of catecholamine norepinephrine // FEMS Microbiol. Lett. 2007. V. 273 (2). P. 214–223.

  106. Drlica K. Control of bacterial DNA supercoiling // Mol. Microbiol. 1992. V. 6 (4). P. 425–433.

  107. Ducarmon Q.R., Zwittink R.D., Hornung B.V.H. et al. Gut microbiota and colonization resistance against bacterial enteric infection // Microbiol. Mol. Biol. Rev. 2019. V. 83 (3). Art. e00007-19.

  108. Dunn A.J. Cytokine activation of the HPA axis // Ann. N.Y. Acad. Sci. 2000. V. 17. P. 608–617.

  109. Dunn A.J. Effects of cytokines and infections on brain neurochemistry // Clin. Neurosci. Res. 2006. V. 6 (1–2). P. 52–68.

  110. Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. V. 308 (5728). P. 1635–1638.

  111. Eisenhofer G., Aneman A., Hooper D. et al. Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine // Am. J. Physiol. 1995. V. 268 (4 (Pt 1)). P. G641–G649.

  112. Eisenhofer G., Aneman A., Hooper D. et al. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans // J. Neurochem. 1996. V. 66 (4). P. 1565–1573.

  113. Elke G., Heyland D.K. Enteral nutrition in critically ill septic patients – less or more? // J. Parenter. Ent. Nutr. 2015. V. 39 (2). P. 140–142.

  114. Elke G., Kuhnt E., Ragaller M. et al. Enteral nutrition is associated with improved outcome in patients with severe sepsis. A secondary analysis of the VISEP trial // Med. Klin. Intensivmed. Notfmed. 2013. V. 108 (3). P. 223–233.

  115. Elsholz A.K., Michalik S., Zuhlke D. et al. CtsR, the gram-positive master regulator of protein quality control, feels the heat // EMBO J. 2010. V. 29 (21). P. 3621–3629.

  116. Ene I.V., Adya A.K., Wehmeier S. et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen // Cell Microbiol. 2012. V. 14 (9). P. 1319–1335.

  117. Eriksson S., Hurme R., Rhen M. Low-temperature sensors in bacteria // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2002. V. 357 (1423). P. 887–893.

  118. Evans D.G., Miles A.A., Niven J.S. The enhancement of bacterial infections by adrenaline // Br. J. Exp. Pathol. 1948. V. 29 (1). P. 20–39.

  119. Evans J.M., Morris L.S., Marchesi J.R. The gut microbiome: the role of a virtual organ in the endocrinology of the host // J. Endocrinol. 2013. V. 218 (3). P. R37–R47.

  120. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease // Nat. Rev. Microbiol. 2010. V. 19 (1). P. 55–71.

  121. Fantappie L., Metruccio M.M., Seib K.L. et al. The RNA chaperone Hfq is involved in stress response and virulence in Nesseria meningitides and is a pleiotropic regulator of protein expression // Infect. Immun. 2009. V. 77 (5). P. 1842–1853.

  122. Fawley J., Gourlay D. Intestinal alkaline phosphatase: a summary of its role in clinical disease // J. Surg. Res. 2016. V. 202 (1). P. 225–234.

  123. Felix K.M., Tahsin S., Wu H.J. Host-microbiota interplay in mediating immune disorders // Ann. N.Y. Acad. Sci. 2018. V. 1417 (1). P. 57–70.

  124. Fernandez P., Diaz A.R., Re M.F. et al. Identification of novel thermosensors in gram-positive pathogens // Front. Mol. Biosci. 2020. V. 7. Art. 592747.

  125. Fischbach M.A., Sonnenburg J.L. Eating for two: how metabolism establishes interspecies interactions in the gut // Cell Host Microbe. 2011. 10 (4). P. 336–347.

  126. Fitzgerald S., Kary S.C., Alshabib E.Y. et al. Redefining the H-Ns protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration // Nucl. Acids Res. 2020. V. 48 (18). P. 10184–10198.

  127. Flint H.J., Scott K.P., Duncan S.H. et al. Microbial degradation of complex carbohydrates in the gut // Gut Microbes. 2012. V. 3 (4). P. 289–306.

  128. Free C.A., Paik V.S. Adrenal steroidogenic actions of cyclic nucleotide derivatives in the rat // Endocrinology. 1977. V. 100 (5). P. 1287–1293.

  129. Freestone P.P.E. Communication between bacteria and their hosts // Scientifica. 2013. V. 2013. Art. 361073.

  130. Freestone P.P.E, Haigh R.D., Williams P.H., Lyte M. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers // FEMS Microbiol. Lett. 1999. V. 172 (1). P. 53–60.

  131. Freestone P.P.E., Haigh R.D., Lyte M. Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica // FEMS Microbiol. Lett. 2007a. V. 269 (2). P. 221–228.

  132. Freestone P.P.E., Walton N.J., Haigh R.D., Lyte M. Influence of dietary catechols on the growth of enteropathogenic bacteria // Int. J. Food Microbiol. 2007b. V. 119 (3). P. 159-169.

  133. Freestone P.P.E., Sandrini S.M., Haigh R.D., Lyte M. Microbial endocrinology: how stress influences susceptibility to infection // Trends Microbiol. 2008. V. 16 (2). P. 55–64.

  134. Fremont R.D., Rice T.W. Pros and cons of feeding the septic intensive care unit patient // Nutr. Clin. Pract. 2015. V. 30 (3). P. 344–350.

  135. Fukatsu K. Role of nutrition in gastroenterological surgery // Ann. Gastroenterol. Surg. 2019. V. 3 (2). P. 160–168.

  136. Gadgil M., Kapur V., Hu W.-S. Transcriptional response of Escherichia coli to temperature shift // Biotechnol. Prog. 2005. V. 21 (3). P. 689–699.

  137. Gajer P., Brotman R.M., Bai G. et al. Temporal dynamics of the human vaginal microbiota // Sci. Transl. Med. 2012. V. 4 (132). Art. 132ra52.

  138. Gal-Mor O., Valdez Y., Finlay B.B. The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice // Microb. Infect. 2006. V. 8 (8). P. 2154–2162.

  139. Gavrilovic L., Spasojevic N., Dronjak S. Psychosocial stress-related changes in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia of adult rats // Auton. Neurosci. 2009. V. 150 (1–2). P. 144–146.

  140. Goldberg R.F., Austen W.G., Zhang X. et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition // PNAS USA. 2008. V. 105 (9). P. 3551–3556.

  141. Gonzales Plaza J.J. Small RNAs as fundamental players in the transference of information during bacterial infectious diseases // Front. Mol. Biosci. 2020. V. 7. Art. 101.

  142. Gophna U., Ron E.Z. Virulence and the heat shock response // Int. J. Med. Microbiol. 2003. V. 292 (7–8). P. 453–461.

  143. Goyal A., Wang T., Dubinkina V., Maslov S. Ecology-guided prediction of cross-feeding interactions in the humangut microbiome // Nat. Commun. 2021. V. 12 (1). Art. 1335.

  144. Grainger D.C. Structure and function of bacterial H-NS protein // Biochem. Soc. Trans. 2016. V. 44 (6). P. 1561–1569.

  145. Haftah A.H., Sharma N., Brookes M.J. et al. Tumor necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice // Biochem. J. 2006. V. 397 (1). P. 61–67.

  146. Hamarneh S.R., Mohamed M.M., Economopoulos K.P. et al. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement // Ann. Surg. 2014. V. 260 (4). P. 706–714.

  147. Han S.J., Kim M., DʼAgati V.D., Lee H.T. Norepinephrine released by intestinal Paneth cells exacerbates ischemic AKI // Am. J. Physiol. Renal Physiol. 2020. V. 318 (1). P. F260–F272.

  148. Haraikawa M., Sogabe N., Tanabe R. et al. Vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) induces intestinal alkaline phosphatase gene expression // J. Nutr. Sci. Vitaminol. 2011. V. 57 (4). P. 274–279.

  149. Hatherill M., Tibby S.M., Hilliard T. et al. Adrenal insufficiency in septic shock // Arch. Dis. Child. 1999. V. 80 (1). P. 51–55.

  150. Hauger R.L., Grigoriadis D.E., Dallman M.F. et al. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands // Pharmacol. Rev. 2003. V. 55 (1). P. 21–26.

  151. Hazel J.R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation // Annu. Rev. Physiol. 1995. V. 57. P. 19–42.

  152. Hegde M., Wood T.K., Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway // Appl. Microbiol. Biotechnol. 2009. V. 84 (4). P. 763–776.

  153. Henriques S.F., Dhaken D.B., Serra L. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behavior // Nat. Commun. 2020. V. 11 (1). Art. 4236.

  154. Herbst K., Bujara M., Heroven A.K. et al. Intrinsic thermal sensing controls proteolysis of Yersinia regulator RovA // PLoS Pathog. 2009. V. 5 (5). Art. e1000435.

  155. Herman J.P., Tasker J.G. Paraventricular hypothalamic mechanisms of chronic stress adaptation // Front. Endocrinol. 2016. V. 7. Art. 137.

  156. Hernandez G., Velasco N., Wainstein C. et al. Gut mucosal atrophy after a short enteral fasting period in critically ill patients // J. Crit. Care. 1999. V. 14 (2). P. 73–77.

  157. Heyland D.K., Dhaliwal R., Drover J.W. et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients // JPEN J. Parenter. Enteral. Nutr. 2003. V. 27 (5). P. 355–373.

  158. Hirata T., Keto Y., Nakata M. et al. Effects of serotonin 5-HT(3) receptor antagonists on CRF-induced abnormal colonic water transport and defecation in rats // Eur. J. Pharmacol. 2008. V. 587 (1–3). P. 281–284.

  159. Hoe C.H., Raabe C.A., Rozhdestvensky T.S., Tang T.H. Bacterial sRNAs: regulation in stress // Int. J. Med. Microbiol. 2013. V. 303 (5). P. 217–229.

  160. Human Microbiome Project defines normal bacterial makeup of the body. National Institutes of Health 2012. (URL: http://www.nih.gov/news-events/news-releases/nih-human-microbiome -project-defines-normal-bacterial-makeup-body. Дocтyп 14.01.2023)

  161. Hurme R., Berndt K.D., Normark S.J., Rhen M.A. A proteinaceous gene regulatory thermometer in Salmonella // Cell. 1997. V. 90 (1). P. 55–64.

  162. Ikeh M., Ahmed Y., Quinn J. Phosphate acquisition and virulence in human fungal pathogens // Microorganisms. 2017. V. 5 (3). Art. 48.

  163. Inda M., Vandenbranden M., Fernandez A., de Mendoza D. A lipid-mediated conformational switch modulates the thermosensing activity of DesK // PNAS USA. 2014. V. 111 (9). P. 3579–3584.

  164. Ito T., Sekizuka T., Kishi N. et al. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria // Gut Microbes. 2019. V. 10 (1). Art. 77091.

  165. Itoi K., Helmreich D.I., Lopez-Figueroa M.O., Watson S.J. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine // J. Neurosci. 1999. V. 19 (13). P. 5464–5472.

  166. Jacobs J.H., Viboud C., Tchetgen E.T. et al. The association of meningococcal disease with influenza in the United States, 1989–2009 // PLoS One. 2014. V. 9 (9). Art. e107486.

  167. Jin L., Chen C., Guo R. et al. Role of corticotropin-releasing hormone family peptides in androgen receptor and vitamin D receptor expression and translocation in human breast cancer MCF-7 cells // Eur. J. Pharmacol. 2012. V. 684 (1–3). P. 27–35.

  168. Jizhong S., Qiaomin W., Chao W., Yanqing L. Corticotropin-releasing factor and Toll-like receptor gene expression is associated with low-grade inflammation in irritable bowel syndrome patients with depression // Gastroenterol. Res. Pract. 2016. V. 2016. Art. 7394924.

  169. de Jong M.F.C., Molenaar N., Beishuizen A., Groeneveld A.B.J. Diminished adrenal sensitivity to endogenous and exogenous adrenocorticotropic hormone in critical illness: a prospective cohort study // Crit. Care. 2015. V. 19 (1). Art. 1.

  170. Kamada N., Chen G.Y., Inohara N., Nunez G. Control of pathogens and pathobionts by the gut microbiota // Nat. Immunol. 2013. V. 14 (7). P. 685–690.

  171. Kaminishi T., Wilson D.N., Takemoto C. et al. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine–Dalgarno interaction // Structure. 2007. V. 15 (3). P. 289–297.

  172. Kamp H.D., Higgins D.E. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes // PLoS Pathog. 2011. V. 7 (8). Art. e1002153.

  173. Kang Y.M., He R.L., Yang L.M. et al. Brain tumor necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure // Cardiovasc. Res. 2009. V. 83 (4). P. 737–746.

  174. Kapp L.D., Lorsch J.R. The molecular mechanics of eukaryotic translation // Annu. Rev. Biochem. 2004. V. 73. P. 657–704.

  175. Karagüzel G., Cakir E. Adrenal dysfunction in critically ill children // Minerva Endocrinol. 2014. V. 39 (4). P. 235–243.

  176. Karavolos M.H., Winzer K., Williams P., Khan C.M. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems // Mol. Microbiol. 2013. V. 87 (3). P. 455–465.

  177. Kasprzak A., Adamek A. The neuropeptide system and colorectal cancer liver metastases: mechanisms and management // Int. J. Mol. Sci. 2020. V. 21 (10). Art. 3494.

  178. Kazmierczak M.J., Wiedmann M., Boor K.J. Alternative sigma factors and their roles in bacterial virulence // Microbiol. Mol. Biol. Rev. 2005. V. 69 (4). P. 527–543.

  179. Kelly J.R., Kennedy P.J., Cryan J.F. et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders // Front. Cell Neurosci. 2015. V. 9. Art. 392.

  180. Keshavarzian A., Choudhary S., Holmes E.W. et al. Preventing gut leakiness by oats supplementation ameliorates alcohol-induced liver damage in rats // J. Pharmacol. Exp. Ther. 2001. V. 299 (2). P. 442–448.

  181. Kiank C., Tache Y., Larauche M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors // Brain Behav. Immun. 2010. V. 24 (1). P. 41–48.

  182. Kimes N.E., Grim C.J., Johnson W.R. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus // ISME J. 2012. V. 6 (4). P. 835–846.

  183. Kis B., Isse T., Snipes J.A. et al. Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood-brain and blood-cerebrospinal fluid barriers // J. Appl. Physiol. 2006. V. 100 (4). P. 1392–1399.

  184. Kistler E.B., Alsaigh T., Chang M., Schmid-Schönbein G.W. Impaired small-bowel barrier integrity in the presence of luminal pancreatic digestive enzymes leads to circulatory shock // Shock. 2012. V. 38 (3). P. 262–267.

  185. Kitamoto S., Nagao-Kitamoto H., Kuffa P., Kamada N. Regulation of virulence: the rise and fall of gastrointestinal pathogens // J. Gastroenterol. 2016. V. 51 (3). P. 195–205.

  186. Klinkert B., Narberhaus F. Microbial thermosensors // Cell. Mol. Life Sci. 2009. V. 66 (16). P. 2661–2676.

  187. Koontalay A., Sangsaikaew A., Khamrassame A. Effect of a clinical nursing practice guideline of enteral nutrition care on the duration of mechanical ventilator for critically ill patients // Asian Nurs. Res. 2020. V. 14 (1). P. 17–23.

  188. Koren O., Goodrich J.K., Cullender T.C. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy // Cell. 2012. V. 150 (3). P. 470–480.

  189. Kortmann J., Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches // Nat. Rev. Microbiol. 2012. V. 10 (4). P. 255–265.

  190. Kortman G.A., Boleij A., Swinkels D.W. Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface // PLos One. 2012. V. 7 (1). Art. e29968.

  191. Kortman G.A., Raffatellu M., Swinkels D.W., Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective // FEMS Microbiol. Rev. 2014. V. 38 (6). P. 1202–1234.

  192. Krezalek M.A., DeFazio J., Zaborina O. et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury // Shock. 2016. V. 45 (5). P. 475–482.

  193. Kuhl F., Adiliaghdam F., Cavallaro P.M. et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging // JCI Insight. 2020. V. 5 (6). Art. e134049.

  194. Lagier J.-C., Armougom F., Million M. et al. Microbial culturomics: paradigm shift in the human gut microbiome study // Clin. Microbiol. Infect. 2012. V. 18 (12). P. 1185–1193.

  195. Lallés J.-P. Intestinal alkaline phosphatase: novel functions and protective effects // Nutr. Rev. 2014. V. 72 (2). P. 82–94.

  196. Lallés J.-P. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition // Nutr. Rev. 2019. V. 77 (10). P. 710–724.

  197. Lamarche M.G., Wanner B.L., Crépin S., Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis // FEMS Microbiol. Rev. 2008. V. 32 (3). P. 461–473.

  198. Larauche M., Kiank C., Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications // J. Physiol. Pharmacol. 2009. V. 60. Suppl. 7. P. 33–46.

  199. Lee H.J., Kwon Y.S., Park C.O. et al. Corticotropin-releasing factor decreases IL-18 in the monocyte-derived dendritic cell // Exp. Dermatol. 2009. V. 18 (3). P. 199–204.

  200. Lee J.G., Kim Y.S., Lee Y.J. et al. Effect of immune-enhancing enteral nutrition enriched with or without beta-glucan on immunomodulation in critically ill patients // Nutrients. 2016. V. 8 (6). P. 336.

  201. Lee P., Peng H., Gelbart T. et al. Regulation of hepcidin transcription by interleukin-1 and interleukin-6 // PNAS USA. 2005. V. 102 (6). P. 1906–1910.

  202. Lesouhaitier O., Veron W., Chapalain A. et al. Gram-negative bacterial sensors for eukaryotic signal molecules // Sensors. 2009. V. 9 (9). P. 6967–6990.

  203. Lesouhaitier O., Clamens T., Rosay T. et al. Host peptidic hormone affecting bacterial biofilm formation and virulence // J. Inn. Immun. 2019. V. 11 (3). P. 227–241.

  204. Ley R.E., Hamady M., Lozupone C. et al. Evolution of mammals and their gut microbes // Science. 2008. V. 320 (5883). P. 1647–1651.

  205. Li G.W., Oh E., Weissman J.S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria // Nature. 2012. V. 484 (7395). P. 538–541.

  206. Li J., Ma X., Zhao L. et al. Extended contact lens wear promotes corneal norepinephrine secretion and Pseudomonas aeruginosa infection in mice // Invest. Ophthalmol. Vis. Sci. 2020. V. 61 (4). Art. 17.

  207. Li L., Mendis N., Trigui H. et al. The importance of the viable but non-culturable state in human bacterial pathogens // Front. Microbiol. 2014. V. 5. Art. 258.

  208. Li Y., Powell D.A., Shaffer S.A. et al. LPS remodeling is an survival strategy for bacteria // PNAS USA. 2012. V. 109 (22). P. 8716–8721.

  209. Libertucci J., Young V.B. The role of the microbiota in infectious diseases // Nat. Microbiol. 2019. V. 4 (1). P. 35–45.

  210. Liu C., Niu Y., Zhou X. et al. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism // Sci. Rep. 2015. V. 5. Art. 12929.

  211. Liu W., Vierke G., Wenke A.K. et al. Crystal structure of the archeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features // J. Mol. Biol. 2007. V. 369 (2). P. 474–488.

  212. Locey K.J., Lennon J.T. Scaling laws predict global microbial diversity // PNAS USA. 2016. V. 113 (21). P. 5970–5975.

  213. Loh E., Kugelberg E., Tracy A. et al. Temperature triggers immune evasion by Neisseria meningitides // Nature. 2013. V. 502 (7470). P. 237–240.

  214. Loh E., Lavender H., Tan F. et al. Thermoregulation of meningococcal fHbp, an important virulence factor and vaccine antigen, is mediated by anti-ribosomal binding site sequences in the open reading frame // PLoS Pathog. 2016. V. 12 (8). Art. e1005794.

  215. Loh E., Righetti F., Eichner H. et al. RNA thermometers in bacterial pathogens // Microbiol. Spectr. 2018. V. 6 (2). Art. https://doi.org/10.1128/microbiolspec.RWR-0012-2017

  216. Long J., Zaborina O., Holbrook C. et al. Depletion of intestinal phosphate after operative injury activates the virulence of P. aeruginosa causing lethal gut-derived sepsis // Surgery. 2008. V. 144 (2). P. 189–197.

  217. Lopez-Garcia P., Forterre P. DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles // BioEssays. 2000. V. 22 (8). P. 738–745.

  218. Lucchini S., Rowley G., Goldberg M.D. et al. H-NS mediates the silencing of laterally acquired genes in bacteria // PLoS Pathog. 2006. V. 2 (8). Art. e81.

  219. Lyte M. The role of microbial endocrinology in infectious disease // J. Endocrinol. 1993. V. 137 (3). P. 343–345.

  220. Lyte M. Microbial endocrinology and infectious disease in the 21st century // Trends Microbiol. 2004. V. 12 (1). P. 14–20.

  221. Lyte M., Ernst S. Catecholamine induced growth of gram negative bacteria // Life Sci. 1992. V. 50 (3). P. 203–212.

  222. Lyte M., Ernst S. Alpha and beta adrenergic receptor involvement in catecholamine-induced of gram-negative bacteria // Biochem. Biophys. Res. Commun. 1993. V. 190 (2). P. 447–452.

  223. Lyte M., Bailey M.T. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma // J. Surg. Res. 1997. V. 70 (2). P. 195–201.

  224. Lyte M., Frank C.D., Green B.T. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7 // FEMS Microbiol. Lett. 1996. V. 139 (2–3). P. 155–159.

  225. Ma S., Shen Q., Zhao L.H. et al. Molecular basis for hormone recognition and activation of corticotropin-releasing factor receptors // Mol. Cell. 2020. V. 77 (3). P. 669–680.

  226. McClave S.A., Taylor B.E., Martindale R.G. et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) // JPEN J. Parenter. Enteral. Nutr. 2016. V. 40 (2). P. 159–211.

  227. Madrid C., Nieto J.M., Paytubi S. et al. Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin // J. Bacteriol. 2002. V. 184 (18). P. 5058–5066.

  228. Majzoub J.A. Corticotropin-releasing hormone physiology // Eur. J. Endocrinol. 2006. V. 155. Suppl. 1. P. S71–S76.

  229. Mallott E.K., Borries C., Koenig A. et al. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayreʼs leaf monkeys // Sci. Rep. 2020. V. 10. Art. 9961.

  230. Malo M.S., Alam S.N., Mostafa G. et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota // Gut. 2010. V. 59 (11). P. 1476–1484.

  231. Malo M.S., Moaven O., Muhammad N. et al. Intestinal alkaline phosphatase promotes bacterial growth by reducing the concentration of luminal nucleotide triphosphates // Am. J. Physiol. Gastrointest. Liver Physiol. 2014. V. 306 (10). P. G826–G838.

  232. Manning T.S., Gibson G.R. Microbial-gut interactions in health and disease // Preb. Best Pract. Res. Clin. Gastroenterol. 2004. V. 18 (2). P. 287–298.

  233. Mansilla M.C., Cybulski L.E., Albanesi D., de Mendoza D. Control of membrane lipid fluidity by molecular thermosensors // J. Bacteriol. 2004. V. 186 (20). P. 6681–6688.

  234. Marik P.E. Enteral nutrition in the critically ill: myths and misconceptions // Crit. Care Med. 2014. V. 42 (4). P. 962–969.

  235. Marik P.E., Zaloga G.P. Early enteral nutrition in acutely ill patients: a systematic review // Crit. Care Med. 2001. V. 29 (12). P. 2264–2270.

  236. Marik P.E., Zaloga G.P. Adrenal insufficiency during septic shock // Crit. Care Med. 2003. V. 31 (1). P. 141–145.

  237. Martis B.S., Forquet R., Reverchon S. et al. DNA supercoiling: an ancestral regulator of gene expression in pathogenic bacteria? // Comput. Struct. Biotechnol. J. 2019. V. 17. P. 1047–1055.

  238. Marx C. The systemic adrenal stress response in severe sepsis and critical illness // Clin. Inten. Care. 2005. V. 16 (2). P. 57–64.

  239. Masson G.S., Nair A.R., Dange R.B. et al. Toll-like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: role of endoplasmic reticulum stress // PLoS One. 2015. V. 10 (3). Art. e0122850.

  240. Matsuno Y., Sugai A., Higashibata H. et al. Effect of growth temperature and growth phase on the lipid composition of the archeal membrane from Thermococcus kodakaraensis // Biosci. Biotechnol. Biochem. 2009. V. 73 (1). P. 104–108.

  241. Mayer F.L., Wilson D., Hube B. Candida albicans pathogenicity mechanisms // Virulence. 2013. V. 4 (2). P. 119–128.

  242. Mba I.E., Nweze E.I. Mechanism of Candida pathogenesis: revisiting the vital drivers // Eur. J. Clin. Microbiol. Infect. Dis. 2020. V. 39 (10). P. 1797–1819.

  243. Mena N.P., Esparza A., Tapia V. et al. Hepcidin inhibits apical iron uptake in intestinal cells // Am. J. Physiol. Gastrointest. Liver Physiol. 2008. V. 294 (1). P. G192–G198.

  244. De Mendoza D. Temperature sensing by membranes // Annu. Rev. Microbiol. 2014. V. 68. P. 101–116.

  245. Meng L., Lu Z., Xiaoteng W. et al. Corticotropin-releasing factor changes the phenotype and function of dendritic cells in mouse mesenteric lymph nodes // J. Neurogastroenterol. Motil. 2015a. V. 21 (4). P. 571–580.

  246. Meng J., Banerjee S., Li D. et al. Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization // Sci. Rep. 2015b. V. 5. Art. 10918.

  247. Meng X., Ahator S.D., Zhang L.H. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems // mSphere. 2020. V. 5 (2). P. e00119-20.

  248. von Mentzer B., Murata Y., Ahlstedt I. et al. Functional CRF receptors in BON cells stimulate serotonin release // Biochem. Pharmacol. 2007. V. 73 (6). P. 805–813.

  249. Microbiology by numbers // Nat. Rev. Microbiol. 2011. V. 9 (9). Art. 628.

  250. Micutkova L., Rychkova N., Sabban E.L. et al. Quantitation of changes in gene expression of norepinephrine biosynthetic enzymes in rat stellate ganglia induced by stress // Neurochem. Int. 2003. V. 43 (3). P. 235–242.

  251. Miller K.R., Smith J.W., Harbrecht B.G., Benns M.V. Early nutrition in trauma: is there still any doubt? // Curr. Trauma Rep. 2016. V. 2 (2). P. 73–78.

  252. Miyata K., Ito H., Fukudo S. Involvement of the 5-HT3 receptor in CRH-induced defecation in rats // Am. J. Physiol. 1998. V. 274 (5). P. G827–G831.

  253. Moreira C.G., Russell R., Mishra A.A. et al. Bacterial adrenergic sensors regulate virulence of enteric pathogens in the gut // mBio. 2016. V. 7 (3). Art. e00826-16.

  254. Morris B.E., Henneberger R., Huber H., Moissl-Eichinger C. Microbial syntrophy: interaction for the common good // FEMS Microbiol. Rev. 2013. V. 37 (3). P. 384–406.

  255. Murakami T., Kamada K., Mizushima K. et al. Changes in intestinal motility and gut microbiota composition in a rat stress model // Digestion. 2017. V. 95 (1). P. 55–60.

  256. Mykytczuk N.C., Trevors J.T., Twine S.M. et al. Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures // Arch. Microbiol. 2010. V. 192 (12). P. 1005–1018.

  257. Nadjm B., Amos B., Mtove G. et al. WHO guidelines for antimicrobial treatment in children admitted to hospital in an area of intense Plasmodium falciparum transmission: prospective study // BMJ. 2010. V. 340. Art. c1350.

  258. Nakade Y., Fukuda H., Iwa M. et al. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats // Am. J. Physiol. Gastrointest. Liver Physiol. 2007. V. 292 (4). P. G1037–G1044.

  259. Nakahigashi K., Yanagi H., Yura T. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation // Nucl. Acids Res. 1995. V. 23 (21). P. 4383–4390.

  260. Nakayama H., Nishimoto Y., Hotta K., Sato Y. Safety of early enteral nutrition for cardiac medical critically ill patients – a retrospective observational study // Circ. Rep. 2020. V. 2 (10). P. 560–564.

  261. Nemeth E., Rivera S., Gabayan V. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin // J. Clin. Invest. 2004. V. 113 (9). P. 1271–1276.

  262. Nichols D., Cahoon N., Trakhtenberg E.M. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species // Appl. Environ. Microbiol. 2010. V. 76 (8). P. 2445–2450.

  263. Nicholls S., MacCallum D.M., Kaffarnik F.A. et al. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans // Fung. Genet. Biol. 2011. V. 48 (3). P. 297–305.

  264. Njim T., Dondorp A., Mukaka M., Ohuma E.O. Identifying risk factors for the development of sepsis during adult severe malaria // Malaria J. 2018. V. 17 (1). Art. 278.

  265. Noda S., Yamada A., Tanabe R. et al. Menaquinone-4 (vitamin K2) up-regulates expression of human intestinal alkaline phosphatase in Caco-2 cells // Nutr. Res. 2016. V. 36 (11). P. 1269–1276.

  266. Nyein P.P., Aung N.M., Kyi T.T. et al. High frequency of clinically significant bacteremia in adult hospitalized with Falciparum malaria // Open Forum Infect. Dis. 2016. V. 3 (1). Art. ofw028.

  267. Oami T., Chihade D.B., Coopersmith C.M. The microbiome and nutrition in critical illness // Curr. Opin. Crit. Care. 2019. V. 25 (2). P. 145–149.

  268. Ogburn K.D., Bottiglieri T., Wang Z., Figueiredo-Pereira M.E. Prostaglandin J2 reduces catechol-O-methyltransferase activity and enhances dopamine toxicity in neuronal cells // Neurobiol. Dis. 2006. V. 22 (2). P. 294–301.

  269. OʼHara A.M., Shanahan F. The gut flora as forgotten organ // EMBO Rep. 2006. V. 7 (7). P. 688–693.

  270. Ojima M., Motooka D., Shimizu K. et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients // Dig. Dis. Sci. 2016. V. 61 (6). P. 1628–1634.

  271. Okada S., Yamaguchi N. Possible role of adrenoceptor in the hypothalamic paraventricular nucleus in corticotropin-releasing factor-induced sympatho-adrenomedullary outflow in rats // Auton. Neurosci. 2017. V. 203. P. 74–80.

  272. De Oliveira N.E.M., Abranches J., Gaca A.O. et al. clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis // Microbiology. 2011. V. 157 (3). P. 656–665.

  273. Omura K., Hirano K., Kanehira E. et al. Small amount of low-residue dier with parenteral nutrition can prevent decrease in intestinal mucosal integrity // Ann. Surg. 2000. V. 231 (1). P. 112–118.

  274. Ono S., Goldberg M.D., Olsson T. et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation // Biochem. J. 2005. V. 391 (2). P. 203–213.

  275. Pande S., Kost C. Bacterial unculturability and the formation of intercellular metabolic networks // Trends Microbiol. 2017. V. 25 (3). P. 349–361.

  276. Paone P., Cani P.D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? // Gut. 2020. V. 69 (12). P. 2232–2243.

  277. Parikh D., Hamid A., Friedman T.C. et al. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration // Eur. J. Pharmacol. 2011. V. 650 (2–3). P. 563–567.

  278. Parsot C., Mekalanos J.J. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response // PNAS USA. 1990. V. 87 (24). P. 9898–9902.

  279. Paulucci N.S., Medeot D.B., Dardanelli M.S., de Lema M.G. Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia // Lipids. 2011. V. 46 (5). P. 435–441.

  280. Perez-Codas A.E., Gosalbes M.J., Friedrichs A. et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach // Gut. 2013. V. 62 (11). P. 1591–1601.

  281. Pfeiffer C.J., Qiu B., Lam S.K. Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats // J. Physiol. Paris. 2001. V. 95 (1–6). P. 81–87.

  282. Phu N.H., Day N.P.J., Tuan P.Q. et al. Concomitant bacteremia in adults with severe Falciparum malaria // Clin. Infect. Dis. 2020. V. 71 (9). P. e465–e470.

  283. Pichon C., du Merle L., Lequeutre I., Le Bouguenec C. The AfaR small RNA controls expression of the AfaD-VIII invasion in pathogenic Escherichia coli strains // Nucl. Acids Res. 2013. V. 41 (10). P. 5469–5482.

  284. Picker M.A., Wing H.J. H-NS, its family members and their regulation of virulence genes in Shigella species // Genes. 2016. V. 7 (12). Art. 112.

  285. Pizzuto M., Lonez C., Baroja-Mazo A. et al. Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4 // Cell Mol. Life Sci. 2019. V. 76 (18). P. 3667–3678.

  286. Polke M., Hube B., Jacobsen I.D. Candida survival strategies // Adv. Appl. Microbiol. 2015. V. 91. P. 139–235.

  287. Prazeres P.H.D.M., Almeida V.M., Lousado L. et al. Macrophages generate pericytes in the developing brain // Cell. Mol. Neurobiol. 2018. V. 38 (4). P. 777–782.

  288. Prete A., Taylor A.E., Bancos I. et al. Prevention of adrenal crisis: cortisol responses major stress compared to stress dose hydrocortisone delivery // J. Clin. Endocrinol. Metab. 2020. V. 105 (7). P. 2262–2274.

  289. Putignani L., Del Chierico F., Petrucca A. et al. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood // Pediatr. Res. 2014. V. 76 (1). P. 2–10.

  290. Quade N., Mendonca C., Herbst K. et al. Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia // J. Biol. Chem. 2012. V. 287 (43). P. 35796–35803.

  291. Raa J. Immune modulation by non-digestible and non-absorbable beta-1,3/1,6-glucan // Microbiol. Ecol. Health. Dis. 2015. V. 26. Art. 27824.

  292. Rae P.A., Gutmann N.S., Tsao J., Schimmer B.P. Mutations in cyclic AMP-dependent protein kinase and corticotropin (ACTH)-sensitive adenylate cyclase affect adrenal steroidogenesis // PNAS USA. 1979. V. 76 (4). P. 1896–1900.

  293. Rajewska M., Wegrzyn K., Konieczny I. AT-rich region and repeated sequences – the essential elements of replication origins of bacterial replicons // FEMS Microbiol. Rev. 2012. V. 36 (2). P. 408–434.

  294. Ragonnaud E., Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people // Immun. Ageing. 2021. V. 18 (1). Art. 2.

  295. Ravi A., Halstead F.D., Bamford A. et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients // Microb. Genom. 2019. V. 5 (9). Art. e000293.

  296. Rea K., Dinan T.G., Cryan J.F. Gut microbiota: a perspective for psychiatrists // Neuropsychobiology. 2020. V. 79 (1). P. 50–62.

  297. Renaud M., Miget A. Role favorisant des perturbations locales causees par lʼadrenaline sur le developpement des infections microbiennes // C.R. Séances Soc. Biol. Fil. 1930. V. 103. P. 1052–1054.

  298. Rentea R.M., Liedel J.L., Welak S.R. et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model // J. Pediatr. Surg. 2012. V. 47 (6). P. 1135–1142.

  299. Rezq S., Abdel-Rahman A.A. Rostral ventrolateral medulla EP3 receptor mediates the sympathoexcitatory and pressor effects of prostaglandin E2 in conscious rats // J. Pharmacol. Exp. Ther. 2016. V. 359 (2). P. 290–299.

  300. Ries L.N.A., Steenwyk J.I., de Castro P.A. et al. Nutritional heterogeneity among Aspergillus fumigatus strains has consequences for virulence in a strain- and host-dependent manner // Front Microbiol. 2019. V. 10. Art. 854.

  301. Rinninella E., Raoul P., Cintoni M. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases // Microorganisms. 2019. V. 7 (1). Art. 14.

  302. Rittner H.L., Hackel D., Voigt P. et al. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils // PLoS Pathog. 2009. V. 5 (4). Art. e1000362.

  303. Roberts A., Matthews J.B., Socransky S.S. et al. Stress and the periodontal diseases: growth responses of periodontal bacteria to Escherichia coli stress-associated autoinducer and exogenous Fe // Oral Microbiol. Immunol. 2005. V. 20 (3). P. 147–153.

  304. Rodiño-Janeiro B.K., Alonso-Cotoner C., Pigrau M. et al. Role of corticotropin-releasing factor in gastrointestinal permeability // J. Neurogastroenterol. Motil. 2015. V. 21 (1). P. 33–50.

  305. Roncarati D., Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output // FEMS Microbiol. Rev. 2017. V 41 (4). P. 549–574.

  306. Rorato R., Menezes A.M., Giusti-Paiva A. et al. Prostaglandin mediates endotoxaemia-induced hypophagia by activation of pro-opiomalanocortin and corticotrophin-releasing factor neurons in rats // Exp. Physiol. 2009. V. 94 (3). P. 371–379.

  307. Rowland I., Gibson G., Heinken A. et al. Gut microbiota functions: metabolism of nutrients and other food components // Eur. J. Nutr. 2018. V. 57 (1). P. 1–24.

  308. Ruaud A., Esquivel-Elizondo S., de la Cuesta-Zuluaga J. et al. Syntrophy via interspecies H2 transfer between Christensenella and Mehanobrevibacter underlies their global cooccurrence in the human gut // mBio. 2020. V. 11 (1). Art. e03235-19.

  309. Ruggiero C., Lalli E. Impact of ACTH signaling on transcriptional regulation of steroidogenic genes // Front. Endocrinol. 2016. V. 7. Art. 24.

  310. Saita E.A., de Mendoza D. Thermosensing via transmembrane protein-lipid interactions // Biochim. Biophys. Acta. 2015. V. 1848 (9). P. 1757–1764.

  311. Salomon A., Berry I., Tuite A.R. et al. Influenza increases invasive meningococcal disease risk in temperate countries // Clin. Microbiol. Infect. 2020. V. 26 (9). P. 1257.e1–1257.e7.

  312. Salvo-Romero E., Martinez C., Lobo B. et al. Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in diarrhea-predominant irritable bowel syndrome // Sci. Rep. 2020. V. 10 (1). Art. 20706.

  313. Salvucci E. The human-microbiome superorganism and its modulation to restore health // Int. J. Food Sci. Nutr. 2019. V. 70 (7). P. 781–795.

  314. Sandrini S., Alghofaili F., Freestone P., Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression // BMC Microbiol. 2014. V. 14. Art. 180.

  315. Sandrini S., Aldriwesh M., Alruways M., Freestone P. Microbial endocrinology: host-bacterial communication within the gut microbiome // J. Endocrinol. 2015. V. 225 (2). P. R21–R34.

  316. Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria // Front. Microbiol. 2015. V. 6. Art. 402.

  317. Saper C.B. The dance of the perivascular and endothelial cells: mechanisms of brain response to immune signaling // Neuron. 2010. V. 65 (1). P. 4–6.

  318. Sarthi M., Lodha R., Vivekanandhan S., Arora N.K. Adrenal status in children with septic shock using low-dose stimulation test // Pediatr. Crit. Care Med. 2007. V. 8 (1). P. 23–28.

  319. Sasabuchi Y., Matsui H., Lefor A.K. et al. Risks and benefits of stress ulcer prophylaxis for patients with severe sepsis // Crit. Care Med. 2016. V. 44 (7). P. e464–e469.

  320. Sauer R.S., Hackel D., Morschel L. et al. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation // Mol. Pain. 2014. V. 10. Art. 10.

  321. Schiltz J.C., Sawchenko P.E. Signaling the brain in systemic inflammation: the role of perivascular cells // Front. Biosci. 2003. V. 8. P. s1321–s1329.

  322. Schirbel A., Kessler S., Rieder F. et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis // Gastroenterology. 2013. V. 144 (3). P. 613–623.

  323. Schorghuber M., Fruhwald S. Effects of enteral nutrition on gastrointestinal function in patients who are critically ill // Lancet Gastroenterol. Hepatol. 2018. V. 3 (4). P. 281–283.

  324. Schumann W. Thermosensor systems in eubacteria // Adv. Exp. Med. Biol. 2012. V. 739. P. 1–16.

  325. Schweizer H.P., Choi K.H. Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production // Arch. Microbiol. 2011. V. 193 (3). P. 227–234.

  326. Scott S.A., Fu J., Chang P.V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor // PNAS USA. 2020. V. 117 (32). P. 19376–19387.

  327. Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease // Physiol. Rev. 2010. V. 90 (3). P. 859–904.

  328. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacterial cells in the body // PLoS Biol. 2016. V. 14 (8). Art. e1002533.

  329. Sengupta P., Garrity P. Sensing temperature // Curr. Biol. 2013. V. 23 (8). P. R304–R307.

  330. Seron-Arbeloa C., Zamora-Elson M., Labarta-Monzon L., Mallor-Bonet T. Enteral nutrition in critical care // J. Clin. Med. Res. 2013. V. 5 (1). P. 1–11.

  331. Serova L.I., Gueorguiev V., Cheng S.Y., Sabban E.L. Adrenocorticotropic hormone elevates gene expression for catecholamine biosynthesis in rat superior cervical ganglia and locus coeruleus by an adrenal independent mechanism // Neuroscience. 2008. V. 153 (4). P. 1380–1389.

  332. Serrats J., Schiltz J.C., Garcia-Bueno B. et al. Dual roles for perivascular macrophages in immune-to-brain signaling // Neuron. 2010. V. 65 (1). P. 94–106.

  333. Servant P., Grandvalet C., Mazodier P. The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus // PNAS USA. 2000. V. 97 (7). P. 3538–3543.

  334. Seyoum Y., Baye K., Humblot C. Iron homeostasis in host and gut bacteria – a complex interrelationship // Gut Microbes. 2021. V. 13 (1). P. 1–19.

  335. Shahul Hameed U.F., Liao C., Radhakrishnan A.K. et al. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing // Nucl. Acids Res. 2019. V. 47 (5). P. 2666–2680.

  336. Shanahan F. The host-microbe interface within the gut // Best Pract. Res. Clin. Gastroenterol. 2002. V. 16 (6). P. 915–931.

  337. Shankar B., Daphnee D.K., Ramakrishnan N., Venkataraman R. Feasibility, safety, and outcome of very early enteral nutrition in critically ill patients: results of an observational study // J. Crit. Care. 2015. V. 30 (3). P. 473–475.

  338. Shapiro R.S., Cowen L.E. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing // mBio. 2012. V. 3 (5). Art. e00238-12.

  339. Sharma U., Olson R.K., Erhart F.N. et al. Prescription opioids induce gut dysbiosis and exacerbate colitis in a murine model of inflammatory bowel disease // J. Crohn. Colit. 2020. V. 14 (6). P. 801–817.

  340. Shen R.L., Dang X.Y., Dong J.L., Hu X.Z. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats // J. Agric. Food Chem. 2012. V. 60 (45). P. 11301–11308.

  341. Shibahara S., Morimoto Y., Furutani Y. et al. Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene // EMBO J. 1983. V. 2 (5). P. 775–779.

  342. Shimizu K., Ogura H., Goto M. et al. Altered gut flora and environment in patients with severe SIRS // J. Trauma. 2006. V. 60 (1). P. 126–133.

  343. Shimizu K., Ogura H., Hamasaki T. et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome // Dig. Dis. Sci. 2011. V. 56 (4). P. 1171–1177.

  344. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes // Nature. 1975. V. 254 (5495). P. 34–38.

  345. Shreiner A.B., Kao J.Y., Young V.B. The gut microbiome in health and in disease // Curr. Opin. Gastroenterol. 2015. V. 31 (1). P. 69–75.

  346. Simpson E.R., Waterman M.R. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH // Annu. Rev. Physiol. 1988. V. 50. P. 427–440.

  347. Singer P., Blaser A.R., Berger M.M. et al. ESPEN guideline on clinical nutrition in the intensive care unit // Clin. Nutr. 2019. V. 38 (1). P. 48–79.

  348. Singh V.K., Leu S.J. Enhancing effect of corticotropin-releasing neurohormone on the production of interleukin-1 and interleukin-2 // Neurosci. Lett. 1990. V. 120 (2). P. 151–154.

  349. Singh L.K., Boucher W., Pang X. et al. Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors // J. Pharmacol. Exp. Ther. 1999. V. 288 (3). P. 1349–1356.

  350. Singh S.B., Caroll-Portillo A., Coffman C. et al. Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy // Sci. Rep. 2020. V. 10 (1). Art. 3107.

  351. Slamti L., Livny J., Waldor M.K. Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant // J. Bacteriol. 2007. V. 189 (2). P. 351–362.

  352. Slominski A.T., Zmijewski M.A., Zbytek B. Key role of CRF in the skin stress response system // Endocr. Rev. 2013. V. 34 (6). P. 827–884.

  353. Smith N.W., Shorten P.R., Altermann E. et al. The classification and evolution of bacterial cross-feeding // Front. Ecol. Evol. 2019. V. 7. Art. 153.

  354. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress // Dialog. Clin. Neurosci. 2006. V. 8 (4). P. 383–395.

  355. Smith S.B., Ravel J. The vaginal microbiota, host defence and reproductive physiology // J. Physiol. 2017. V. 595 (2). P. 451–463.

  356. Sobczak M., Salaga M., Storr M.A., Fichna J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives // J. Gastroenterol. 2014. V. 49 (1). P. 24–45.

  357. Sogabe N., Maruyama R., Hosori T., Goseki-Sone M. Enhancement effects of vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) on intestinal alkaline phosphatase activity in rats // J. Nutr. Sci. Vitaminol. 2007. V. 53 (3). P. 219–224.

  358. Soto-Tinoco E., Guerrero-Vargas N.N., Buijs R.M. Interaction between the hypothalamus and the immune system // Exp. Physiol. 2016. V. 101 (12). P. 1463–1471.

  359. Srinivasan V., Hasbani N.R., Mehta N.M. et al. Early enteral nutrition is associated with improved clinical outcomes in critically ill children: a secondary analysis of nutrition support in the heart and lung failure – pediatric insulin titration trial // Pediatr. Crit. Care Med. 2020. V. 21 (3). P. 213–221.

  360. Staniszewska M. Virulence factors in Candida species // Curr. Prot. Pept. Sci. 2020. V. 21 (3). P. 313–323.

  361. Stecher B., Hardt W.D. The role of microbiota in infectious disease // Trends Microbiol. 2008. V. 16 (3). P. 107–114.

  362. Steinmann R., Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment // Future Microbiol. 2013. V. 8 (1). P. 85–105.

  363. Stengel A., Tache Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight // Annu. Rev. Physiol. 2009. V. 71. P. 219–239.

  364. Stephen A.M., Cummings J.H. The microbial contribution to human faecal mass // J. Med. Microbiol. 1980. V. 13 (1). P. 45–56.

  365. Stephens D.S., Greenwood B., Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitides // Lancet. 2007. V. 369 (9580). P. 2196–2210.

  366. Stewart E.J. Growing unculturable bacteria // J. Bacteriol. 2012. V. 194 (16). P. 4151–4160.

  367. Sundberg L.R., Kunttu H.M., Valtonen E.T. Starvation can diversify the population structure and virulence strategies of an environmentally transmitting fish pathogen // BMC Microbiol. 2014. V. 14. Art. 67.

  368. Suzuki I., Los D.A., Murata N. Perception and transduction of low-temperature signals to induce desaturation of fatty acids // Biochem. Soc. Trans. 2000. V. 28 (6). P. 628–630.

  369. Sy B.M., Tree J.J. Small RNA regulation of virulence in pathogenic Escherichia coli // Front. Cell Infect. Microbiol. 2020. V. 10. Art. 622202.

  370. Tache Y., Perdue M.H. Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function // Neurogastroenterol. Motil. 2004. V. 16. Suppl. 1. P. 137–142.

  371. Tache Y., Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia // J. Neurogastroenterol. Motil. 2015. V. 21 (1). P. 8–24.

  372. Teitelbaum A.A., Gareau M.G., Jury J. et al. Chronic peripheral administration of corticotropin-releasing factor causes colonic barrier dysfunction similar to psychological stress // Am. J. Physiol. Gastrointest. Liver Physiol. 2008. V. 295 (3). P. G452–G459.

  373. Tendeng C., Bertin P.N. H-NS in gram-negative bacteria: a family of multifaceted proteins // Trends Microbiol. 2003. V. 11 (11). P. 511–518.

  374. Thakur A.K., Shakya A., Husain G.M. et al. Gut-microbiota and mental health: current and future perspectives // J. Pharmacol. Clin. Toxicol. 2014. V. 2 (1). Art. 1016.

  375. Tierney B.T., Yang Z., Luber J.M. et al. The landscape of genetic content in the gut and oral human microbiome // Cell Host Microbe. 2019. V. 26 (2). Art. 283–295.

  376. Trajtenberg F., Albanesi D., Ruetalo N. et al. Allosteric activation of bacterial response regulators: the role of the cognate histidine kinase beyond phosphorylation // mBio. 2014. V. 5 (6). Art. e02105.

  377. Tsatsanis C., Androulidaki A., Alissafi T. et al. Corticotropin-releasing factor and the urocortins induce the expression of TLR4 in macrophages via activation of the transcription factors PU.1 and AP-1 // J. Immunol. 2006. V. 176 (3). P. 1869–1877.

  378. Tse-Dinh Y.C., Qi H., Menzel R. DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance // Trends Microbiol. 1997. V. 5 (8). P. 323–326.

  379. Twittenhoff C., Heroven A.K., Muhlen S. et al. An RNA thermometer dictates production of a secreted bacterial toxin // PLoS Pathog. 2020. V. 16 (1). Art. e1008184.

  380. Valentino R.J., van Bockstaele E. Endogenous opioids: the downside of opposing stress // Neurobiol. Stress. 2015. V. 1. P. 23–32.

  381. Valentino R.J., van Bocksteale E. Endogenous opioids: opposing stress with a cost // F1000Prime Rep. 2015. V. 7. Art. 58.

  382. Vandewalle J., Libert C. Glucocorticoids in sepsis: to be or not to be // Front. Immunol. 2010. V. 11. Art. 1318.

  383. Vasilache A.M., Qian H., Blomqvist A. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells towards enhanced prostaglandin E(2) signaling // Brain Behav. Immun. 2015. V. 48. P. 31–41.

  384. Vedantam G., Hecht D.W. Antibiotics and anaerobes of gut origin // Curr. Opin. Microbiol. 2003. V. 6 (5). P. 457–461.

  385. Veri A.O., Robbins N., Cowen L.E. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits // FEMS Yeast Res. 2018. V. 18 (5). Art. foy041.

  386. Vila-Pérez D., Jordan-Garcia I. Relative adrenal insufficiency in pediatric septic shock // J. Pediatr. Inten. Care. 2015. V. 4 (3). P. 129–137.

  387. Voreades N., Kozil A., Weir T.L. Diet and the development of the human intestinal microbiome // Front. Microbiol. 2014. V. 5. Art. 494.

  388. Walker A.W., Duncan S.H., Louis P., Flint H.J. Phylogeny, culturing, and metagenomics of the human microbiota // Trends Microbiol. 2014. V. 22 (5). P. 267–274.

  389. Walsh C.J., Guinane C.M., OʼToole P.W., Cotter P.D. Beneficial modulation of the gut microbiota // FEBS Lett. 2014. V. 588 (22). P. 4120–4130.

  390. Wan X., Bi J., Gao X. et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice // Nutrients. 2015. V. 7 (8). P. 6294–6312.

  391. Wang F., Meng J., Zhang L. et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model // Sci. Rep. 2018. V. 8 (1). Art. 3596.

  392. Wang F., Meng J., Zhang L., Roy S. Opioid use potentiates the virulence of hospital-acquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentium infection // Gut Microbes. 2020. V. 11 (2). P. 172–190.

  393. Wang Y., Ames N.P., Tun H.M. et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk // Front. Microbiol. 2016. V. 7. Art. 129.

  394. Wilson B., Typpo K. Nutrition: a primary therapy in pediatric acute respiratory distress syndrome // Front. Pediatr. 2016. V. 4 (4). Art. 108.

  395. Wright M.H., Fetzer C., Sieber S.A. Chemical probes unravel an antimicrobial defense response triggered by binding of the human opioid dynorphin to bacterial sensor kinase // J. Am. Chem. Soc. 2017. V. 139 (17). P. 6152–6159.

  396. Wu H.J., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity // Gut Microbes. 2012. V. 3 (1). P. 4–14.

  397. Wu S.V., Yuan P.Q., Lai J. et al. Activation of type 1 CRH receptor isoforms induces serotonin release from human carcinoid BON-1N cells: an enterochromaffin cell model // Endocrinology. 2011. V. 152 (1). P. 126–137.

  398. Yang Y., Liu L., Jiang D. et al. Critical illness-related corticosteroid insufficiency after multiple traumas: a multicenter, prospective cohort study // J. Trauma Acute Care Surg. 2014. V. 76 (6). P. 1390–1396.

  399. Ye F., Brauer T., Niehus E. et al. Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling // Int. J. Med. Microbiol. 2007. V. 297 (2). P. 65–81.

  400. Yu Y., Zhang Z.H., Wei S.G. et al. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction // Hypertension. 2010. V. 55 (3). P. 652–659.

  401. Yu Y., Liu Z.Q., Liu X.Y. et al. Stress-derived corticotropin releasing factor breaches epithelial endotoxin tolerance // PLoS One. 2013. V. 8 (6). Art. e65760.

  402. Zaborin A., Smith D., Garfield K. et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness // mBio. 2014. V. 5 (5). Art. e01361-14.

  403. Zaborina O., Lepine F., Xiao G. et al. Dynorphine activates quorum sensing quinolone signaling in Pseudomonas aeruginosa // PLoS Pathog. 2007. V. 3 (3). Art. e35.

  404. Zhang Y.M., Rock C.O. Membrane lipid homeostasis in bacteria // Nat. Rev. Microbiol. 2008. V. 6 (3). P. 222–233.

  405. Zhang Z.H., Felder R.B. Hypothalamic corticotrophin-releasing factor and norepinephrine mediate sympathetic and cardiovascular responses to acute intracarotid injection of tumor necrosis factor-alpha in the rat // J. Neuroendocrinol. 2008. V. 20 (8). P. 978–987.

  406. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease // Cell Res. 2020. V. 30 (6). P. 492–506.

  407. Zhou M., Simms H.H., Wang P. Increased gut-derived norepinephrine release in sepsis: up-regulation of intestinal tyrosine hydroxylase // Biochim. Biophys. Acta. 2004. V. 1689 (3). P. 212–218.

  408. Ziegler M.G., Bao X., Kennedy B.P. et al. Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase // Ann. N.Y. Acad. Sci. 2002. V. 971 (1). P. 76–82.

Дополнительные материалы отсутствуют.