Успехи современной биологии, 2023, T. 143, № 3, стр. 218-228

Диагностический и терапевтический подходы к мультисистемному воспалительному синдрому и аналогичным состояниям

А. Эмами 1, С. А. Егане 2, Х. А. Мохаммади 3, Т. Шахбази 2*

1 Хамаданский университет медицинских наук
Хамадан, Иран

2 Исследовательская группа по нейрохирургии, студенческий исследовательский комитет, Хамаданский университет медицинских наук
Хамадан, Иран

3 Студенческий исследовательский комитет, медицинский факультет Хамаданского университета медицинских наук
Хамадан, Иран

* E-mail: shahbazi.taha@yahoo.com

Поступила в редакцию 02.01.2023
После доработки 04.01.2023
Принята к публикации 09.02.2023

Аннотация

Мультисистемный воспалительный синдром (MIS-C, multisystem inflammatory syndrome in children) может возникнуть у детей, страдающих тяжелым острым респираторным заболеванием, вызванным коронавирусом 2-го типа (SARS-CoV-2). Клинически характеристики MIS-C проявляются поражением двух или более органов, лихорадкой, тяжестью заболевания, лабораторно подтвержденным воспалением и лабораторно или эпидемиологически подтвержденной инфекцией SARS-CoV-2. MIS-C имеет несколько схожих черт с болезнью Кавасаки, последующим гемофагоцитарным лимфогистиоцитозом/синдромом активации макрофагов и синдромом токсического шока. Связь между MIS-C и инфекцией SARS-CoV-2 указывает на причину постинфекционной иммунологической дисрегуляции. Учитывая вероятность быстрого клинического ухудшения, рекомендуется проводить лечение пациентов с MIS-C в педиатрическом отделении интенсивной терапии. В зависимости от клинической картины рекомендуется определенная иммуномодулирующая терапия. Необходимы дополнительные исследования, чтобы определить связь между MIS-C и иммунологической реакцией на вакцины SARS-CoV-2, которые создаются в настоящее время. Были разработаны многочисленные терапевтические методы для лечения MIS, ассоциированного с COVID-19, у детей (MIS-C), полное выяснение его этиологии требует дальнейших исследований. В этом обзоре мы внимательно рассматриваем и обобщаем ранее опубликованные методы лечения.

Ключевые слова: COVID-19, MIS-C, гемофагоцитарный лимфогистиоцитоз

Список литературы

  1. Belot A., Antona D., Renolleau S. et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May // Eurosurveillance. 2020. V. 25. Art. 2001010.

  2. Burnham J.P., Kollef M.H. Understanding toxic shock syndrome // Inten. Care Med. 2015. V. 41. P. 1707–1710.

  3. Burns J.C., Franco A. The immunomodulatory effects of intravenous immunoglobulin therapy in Kawasaki disease // Exp. Rev. Clin. Immunol. 2015. V. 11. P. 819–825.

  4. Burns J.C., Kushner H.I., Bastian J.F. et al. Kawasaki disease: a brief history // Pediatrics. 2000. V. 106 (2). P. E27.

  5. Burns J.C., Mason W.H., Glode M.P. et al. Clinical and epidemiologic characteristics of patients referred for evaluation of possible Kawasaki disease // J. Pediatrics. 1991. V. 118. P. 680–686.

  6. Carter M.J., Fish M., Jennings A. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection // Nature medicine. 2020. V. 26. P. 1701–1707.

  7. Choi N.H., Fremed M., Starc T. et al. MIS-C and cardiac conduction abnormalities // Pediatrics. 2020. V. 146 (6). Art. e2020009738.

  8. Cirks B.T., Rowe S.J., Jiang S.Y. et al. Sixteen weeks later: expanding the risk period for multisystem inflammatory syndrome in children // J. Pediatr. Infect. Dis. Soc. 2021. V. 10. P. 686–690.

  9. Davies P., Evans C., Kanthimathinathan H.K. et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study // The Lancet Child Adolescent Health. 2020. V. 4. P. 669–677.

  10. Dolhnikoff M., Ferranti J.F., de Almeida Monteiro R.A. et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome // Lancet Child Adol. Health. 2020. V. 4 (10). P. 790–794.

  11. Domico M., McCanta A.C., Hunt J.L. et al. High-grade heart block requiring transvenous pacing associated with multisystem inflammatory syndrome in children during the COVID-19 pandemic // HeartRhythm Case Rep. 2020. V. 6. P. 811–814.

  12. Dufort E.M., Koumans E.H., Chow E.J. et al. Multisystem inflammatory syndrome in children in New York State // New England J. Med. 2020. V. 383. P. 347–358.

  13. Eleftheriou D., Levin M., Shingadia D. et al. Management of Kawasaki disease // Arch. Dis. Childhood. 2014. V. 99. P. 74–83.

  14. Espitia C., Cervera I., González R., Mancilla R. A 38-kD Mycobacterium tuberculosis antigen associated with infection. Its isolation and serologic evaluation // Clin. Exp. Immunol. 1989. V. 77. P. 373–377.

  15. Feldstein L.R., Rose E.B., Horwitz S.M. et al. Multisystem inflammatory syndrome in US children and adolescents // New England J. Med. 2020. V. 383. P. 334–346.

  16. Feldstein L.R., Tenforde M.W., Friedman K.G. et al. Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19 // Jama. 2021. V. 325. P. 1074–1087.

  17. Gamez-Gonzalez L.B., Moribe-Quintero I., Cisneros-Castolo M. et al. Kawasaki disease shock syndrome: unique and severe subtype of Kawasaki disease // Pediatr. Internat. 2018. V. 60. P. 781–790.

  18. Gatterre P., Oualha M., Dupic L. et al. Kawasaki disease: an unexpected etiology of shock and multiple organ dysfunction syndrome // Inten. Care Med. 2012. V. 38. P. 872–878.

  19. Godfred-Cato S., Bryant B., Leung J. et al. COVID-19-associated multisystem inflammatory syndrome in children – United States, March–July 2020 // Morb. Mortal. Wkly Rep. (MMWR). 2020. V. 69 (32). P. 1074–1080.

  20. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 // Royal College of Paediatrics and Child Health (RCPCH). 2020. 6 p.

  21. Hajjeh R.A., Reingold A., Weil A. et al. Toxic shock syndrome in the United States: surveillance update, 1979–1996 // Emerg. Infect. Dis. 1999. V. 5 (6). P. 807–810.

  22. Hanson K.E., Caliendo A.M., Arias C.A. et al. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19 // Clin. Infect. Dis. 2020. Art. ciaa760.

  23. Henter J.-I., Horne A., Aricó M. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis // Pediatr. Blood Cancer. 2007. V. 48. P. 124–131.

  24. Jiang L., Tang K., Levin M. et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents // Lancet Infect. Dis. 2020. V. 20. P. e276–e288.

  25. Kanegaye J.T., Wilder M.S., Molkara D. et al. Recognition of a Kawasaki Disease Shock Syndrome // Pediatrics. 2009. V. 123 (5). P. e783–e789.

  26. Lee P.Y., Day-Lewis M., Henderson L.A. et al. Distinct clinical and immunological features of SARS–CoV-2–induced multisystem inflammatory syndrome in children // J. Clin. Invest. 2020. V. 130. P. 5942–5950.

  27. McCrindle B.W., Rowley A.H., Newburger J.W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association // Circulation. 2017. V. 135 (17). P. e927–e999.

  28. Molloy E.J., Nakra N., Gale C. et al. Multisystem inflammatory syndrome in children (MIS-C) and neonates (MIS-N) associated with COVID-19: optimizing definition and management // Pediatr. Res. 2022. P. 1–10.

  29. Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) // Centers for Disease Control and Prevention. 2020.

  30. Nakra N.A., Blumberg D.A., Herrera-Guerra A., Lakshminrusimha S. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management // Children. 2020. V. 7. P. 69.

  31. Nasrabadi T., Ruegner H., Sirdari Z.Z. et al. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water // Appl. Geochem. 2016. V. 68. P. 1–9.

  32. Newburger J.W., Takahashi M., Gerber M.A. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association // Circulation. 2004. V. 110. P. 2747–2771.

  33. Pang J., Boshier F.A., Alders N. et al. SARS-CoV-2 polymorphisms and multisystem inflammatory syndrome in children // Pediatrics. 2020. Art. 146.

  34. Parthasarathy P., Agarwal A., Chawla K. et al. Upcoming biomarkers for the diagnosis of Kawasaki disease: a review // Clin. Biochem. 2015. V. 48. P. 1188–1194.

  35. Radia T., Williams N., Agrawal P. et al. Multi-system inflammatory syndrome in children, adolescents (MIS-C): a systematic review of clinical features and presentation // Paediatr. Resp. Rev. 2021. V. 38. P. 51–57.

  36. Riphagen S., Gomez X., Gonzalez-Martinez C. et al. Hyperinflammatory shock in children during COVID-19 pandemic // The Lancet. 2020. V. 395. P. 1607–1608.

  37. Rosenberg J., Gokaldas R., Gualberto G. Hemophagocytic lymphohistiocytosis (HLH)/macrophage activated syndrome (MAS) with CNS Aspergillus // Neurology. 2017. V. 88. Art. P2. 372.

  38. Shulman S.T. Pediatric coronavirus disease-2019-associated multisystem inflammatory syndrome. US: Oxford University Press, 2020. P. 285–286.

  39. Singh S., Jindal A.K., Pilania R.K. Diagnosis of Kawasaki disease // Int. J. Rheum. Dis. 2018. V. 21. P. 36–44.

  40. Son M.B.F., Friedman K. COVID-19: Multisystem inflammatory syndrome in children (MIS-C) clinical features, evaluation, and diagnosis // upToDate. Waltham. (Accessed on August 19, 2021). 2021.

  41. Son M.B.F., Friedman K., Kaplan S.L. et al. COVID-19: multisystem inflammatory syndrome in children (MIS-C) management and outcome // upToDate. 2021.

  42. Sperotto F., Friedman K.G., Son M.B.F. et al. Cardiac manifestations in SARS-CoV-2-associated multisystem inflammatory syndrome in children: a comprehensive review and proposed clinical approach // Eur. J. Pediatrics. 2021. V. 180. P. 307–322.

  43. Talkington D.F., Schwartz B., Black C.M. et al. Association of phenotypic and genotypic characteristics of invasive Streptococcus pyogenes isolates with clinical components of streptococcal toxic shock syndrome // Infect. Immun. 1993. V. 61. P. 3369–3374.

  44. Terpos E., Gavriatopoulou M., Ntanasis-Stathopoulos I. et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment // Blood Cancer J. 2021. V. 11. P. 1–9.

  45. Whittaker E., Bamford A., Kenny J. et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 // Jama. 2020. V. 324. P. 259–269.

  46. Wu C.M.Y., Noska A. Intrauterine device infection causing concomitant streptococcal toxic shock syndrome and pelvic abscess with Actinomyces odontolyticus bacteraemia // BMJ Case Rep. 2016. Art. bcr2015213236.

Дополнительные материалы отсутствуют.