Успехи современной биологии, 2023, T. 143, № 3, стр. 239-249

Эндолизин бактериофагов: альтернативный терапевтический подход к лечению мастита крупного рогатого скота

Р. Канвар 1*, М. А. Аслам 1, Х. Зулькурнайн 1, А. Кадир 1, С. Али 1, С. Наяб 1, С. Мустафа 2

1 Институт микробиологии, Университет сельского хозяйства
Фейсалабад, Пакистан

2 Факультет зоологии, дикой природы и рыболовства, Университет сельского хозяйства
Фейсалабад, Пакистан

* E-mail: Rabiakanwar98@gmail.com

Поступила в редакцию 04.09.2022
После доработки 12.01.2023
Принята к публикации 23.01.2023

Аннотация

Мастит является одним из наиболее распространенных заболеваний крупного рогатого скота, которое приводит к существенным экономическим потерям в молочной промышленности. Несмотря на значительный прогресс в контроле и лечении мастита, он по-прежнему встречается достаточно часто. К тому же, употребление молока маститных коров становится источником токсикоинфекций для человека, а появление устойчивых к антибиотикам бактериальных штаммов делает мастит практически неизлечимым. Поэтому существует необходимость в альтернативных подходах к лечению мастита. Один из них – использование эндолизина бактериофагов – рассматривается в предлагаемой статье.

Ключевые слова: крупный рогатый скот, мастит, множественная лекарственная устойчивость, бактериофаг, эндолизин

Список литературы

  1. Abdelrahman M.A., Khadr A.M., Mahmoud A.A. et al. Occurrence of clinical and subclinical mastitis and associated risk factors in lactating goats with special reference to dry period infection and teat skin microflora // Alex. J. Vet. Sci. 2020. V. 64 (2). P. 95–101.

  2. Abdi R.D., Gillespie B.E., Ivey S. et al. Antimicrobial resistance of major bacterial pathogens from dairy cows with high somatic cell count and clinical mastitis // Animals. 2021. V. 11 (1). P. 131.

  3. Abebe R., Hatiya H., Abera M. et al. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia // BMC Vet. Res. 2016. V. 12 (1). P. 1–11.

  4. Abril A.G., Carrera M., Böhme K. et al. Proteomic characterization of antibiotic resistance in listeria and production of antimicrobial and virulence factors // Int. J. Mol. Sci. 2021. V. 22 (15). P. 8141.

  5. An R., Gao M., Meng Y. et al. Infective mastitis due to bovine-associated Streptococcus dysgalactiae contributes to clinical persistent presentation in a murine mastitis model // Vet. Med. Sci. 2021. V. 7 (5). P. 1600–1610.

  6. Ashfaq M., Razzaq A., Muhammad G. Economic analysis of dairy animal diseases in Punjab: a case study of Faisalabad district // J. Anim. Plant. Sci. 2015. V. 25 (5). P. 1482–1495.

  7. Ashraf A., Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis // Anim. Health. Res. Rev. 2020. V. 21 (1). P. 36–49.

  8. Awandkar S.P., Kulkarni M.B., Khode N.V. Bacteria from bovine clinical mastitis showed multiple drug resistance // Vet. Res. Commun. 2022. V. 46 (1). P. 147–158.

  9. Azam A.H., Tanji Y. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy // Appl. Microbiol. Biotechnol. 2019. V. 103 (5). P. 2121–2131.

  10. Bachaya H.A., Raza M.A., Murtaza S., Akbar I.U.R. Subclinical bovine mastitis in Muzaffar Garh district of Punjab (Pakistan) // J. Anim. Plant Sci. 2011. V. 21 (1). P. 16–19.

  11. Balemi A., Gumi B., Amenu K. et al. Prevalence of mastitis and antibiotic resistance of bacterial isolates from CMT positive milk samples obtained from dairy cows, camels, and goats in two pastoral districts in Southern Ethiopia // Animals. 2021. V. 11 (6). P. 1530.

  12. Bennett S., Ben Said L., Lacasse P. et al. Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis // Antibiotics. 2021. V. 10 (11). P. 1418.

  13. Boireau C., Cazeau G., Jarrige N. et al. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016 // J. Dairy Sci. 2018. V. 101 (10). P. 9451–9462.

  14. Botelho A.C., Ferreira A.F., Fracalanzza S.E. et al. A perspective on the potential zoonotic role of Streptococcus agalactiae: searching for a missing link in alternative transmission routes // Front. Microbiol. 2018. V. 9. P. 608.

  15. Bradley A.J., Green M.J. A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period // J. Dairy Sci. 2000. V. 83 (9). P. 1957–1965.

  16. Burvenich C., Van Merris V., Mehrzad J. et al. Severity of E. coli mastitis is mainly determined by cow factors // Vet. Res. 2003. V. 34 (5). P. 521–564.

  17. Capurro A., Aspán A., Unnerstad H.E. et al. Identification of potential sources of Staphylococcus aureus in herds with mastitis problems // J. Dairy Sci. 2010. V. 93 (1). P. 180–191.

  18. Cebron N., Maman S., Walachowski S. et al. Th17-related mammary immunity, but not a high systemic Th1 immune response is associated with protection against E. coli mastitis // NPJ Vaccines. 2020. V. 5 (1). P. 1–13.

  19. Cheng J., Zhang J., Han B. et al. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells // J. Dairy Sci. 2020. V. 103 (4). P. 3493–3504.

  20. Colavecchio A., Cadieux B., Lo A., Goodridge L.D. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family – a review // Front. Microbiol. 2017. V. 8. P. 1108.

  21. De U.K., Mukherjee R. Activity of cyclooxygenase-2 and nitric oxide in milk leucocytes following intramammary inoculation of a bio-response modifier during bovine Staphylococcus aureus subclinical mastitis // Vet. Res. Commun. 2014. V. 38 (3). P. 201–207.

  22. Duse A., Persson-Waller K., Pedersen K. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows // Animals. 2021. V. 11 (7). P. 2113.

  23. Edelhoff I.N.F., Pereira M.H.C., Bromfield J.J. et al. Inflammatory diseases in dairy cows: risk factors and associations with pregnancy after embryo transfer // J. Dairy Sci. 2020. V. 103 (12). P. 11970–11987.

  24. Edmondson P. Blitz therapy for the eradication of Streptococcus agalactiae infections in dairy cattle // In Practice. 2011. V. 33 (1). P. 33–37.

  25. El-Ashker M., Gwida M., Monecke S. et al. Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt // Vet. Microbiol. 2020. V. 240. P. 108535.

  26. El-Sayed A., Kamel M. Bovine mastitis prevention and control in the post-antibiotic era // Trop. Anim. Health Prod. 2021. V. 53 (2). P. 236.

  27. Fessia A.S., Odierno L.M. Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: a review // Folia. Microbiol. 2021. V. 66 (4). P. 509–523.

  28. Ganaie M.Y., Qureshi S., Kashoo Z. et al. Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: newer therapeutic agents against bovine mastitis // Vet. Res. Commun. V. 42 (4). 2018. P. 289–295.

  29. Garcia S.N., Osburn B.I., Cullor J.S. A one health perspective on dairy production and dairy food safety // One Health. 2019. V. 7. P. 100086.

  30. Gill J.J., Pacan J.C., Carson M.E. et al. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle // Antimicrob. Agents Chemother. 2006. V. 50 (9). P. 2912–2918.

  31. Goldstone R.J., Harris S., Smith D.G. Genomic content typifying a prevalent clade of bovine mastitis-associated Escherichia coli // Sci. Rep. 2016. V. 6 (1). P. 1–15.

  32. Gomes F., Henriques M. Control of bovine mastitis: old and recent therapeutic approaches // Curr. Microbiol. 2016. V. 72 (4). P. 377–382.

  33. Guo M., Gao Y., Xue Y. et al. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 690377.

  34. Hamza A., Perveen S., Abbas Z., Rehman S.U. The lytic SA phage demonstrate bactericidal activity against mastitis causing Staphylococcus aureus // Open Life Sci. 2016. V. 11 (1). P. 39–45.

  35. Han J.E., Kim J.H., Hwang S.Y. et al. Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis // Res. Vet. Sci. 2013. V. 95 (2). P. 758–763.

  36. Holko I., Tančin V., Vršková M., Tvarožková K. Prevalence and antimicrobial susceptibility of udder pathogens isolated from dairy cows in Slovakia // J. Dairy Res. 2019. V. 6 (4). P. 436–439.

  37. Ijaz M., Mehmood K., Durrani A.Z. et al. Treatment of chronic mastitis in a dairy cow: a case report // Glob. Vet. 2014. V. 13 (1). P. 01–04.

  38. Ismail Z.B., Abutarbush S.M. Molecular characterization of antimicrobial resistance and virulence genes of Escherichia coli isolates from bovine mastitis // Vet. World. 2020. V. 13 (8). P. 1588.

  39. Jackson L.R., Farin C.E., Whisnant S. Tumor necrosis factor alpha inhibits in vitro bovine embryo development through a prostaglandin mediated mechanism // J. Anim. Sci. Biotechnol. 2012. V. 3 (1). P. 1–4.

  40. Jingar S.C., Mahendra S., Roy A.K. Economic losses due to clinical mastitis in cross-bred cows // J. Dairy Vet. Sci. 2017. V. 3 (2). P. 555606.

  41. Kabelitz T., Aubry E., van Vorst K. et al. The role of Streptococcus spp. in bovine mastitis // Microorganisms. 2021. V. 9 (7). P. 1497.

  42. Kaczorowski L., Powierska-Czarny J., Wolko L. et al. The influence of bacteria causing subclinical mastitis on the structure of the cow’s milk microbiome // Molecules. 2022. V. 27 (6). P. 1829.

  43. Kassa F., Ayano A.A., Abera M., Kiros A. Longitudinal study of bovine mastitis in Hawassa and Wendo Genet small holder dairy farms // Glob. J. Sci. Front. Res. 2014. V. 14. P. 34–41.

  44. Keane O.M. Symposium review: intramammary infections – major pathogens and strain-associated complexity // J. Dairy Sci. 2019. V. 102 (5). P. 4713–4726.

  45. Keefe G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis // Vet. Clin. N. Am. Food. Anim. Pract. 2012. V. 28 (2). P. 203–216.

  46. Khan A., Mushtaq M.H., Din Ahmad M.U. et al. Prevalence of clinical mastitis in bovines in different climatic conditions in KPK, (Pakistan) // Sci. Int. 2015. V. 27 (3). P. 2289–2293.

  47. Klaas I.C., Zadoks R.N. An update on environmental mastitis: challenging perceptions // Transbound. Emerg. Dis. 2018. V. 65. P. 166–185.

  48. Kuipers A., Koops W.J., Wemmenhove H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012 // J. Dairy Sci. 2016. V. 99 (2). P. 1632–1648.

  49. Lakew B.T., Fayera T., Ali Y.M. Risk factors for bovine mastitis with the isolation and identification of Streptococcus agalactiae from farms in and around Haramaya district, eastern Ethiopia // Trop. Anim. Health. Prod. 2019. V. 51 (6). P. 1507–1513.

  50. Love M.J., Bhandari D., Dobson R.C., Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care // Antibiotics. 2018. V. 7 (1). P. 17.

  51. Lusiak-Szelachowska M., Weber-Dąbrowska B., Górski A. Bacteriophages and lysins in biofilm control // Virol. Sin. 2020. V. 35 (2). P. 125–133.

  52. Martinez G., Harel J., Higgins R. et al. Characterization of Streptococcus agalactiae isolates of bovine and human origin by randomly amplified polymorphic DNA analysis // J. Clin. Microbiol. 2000. V. 38 (1). P. 71–78.

  53. Miles A.M., Huson H.J. Graduate student literature review: understanding the genetic mechanisms underlying mastitis // J. Dairy Sci. 2021. V. 104 (1). P. 1183–1191.

  54. Mohammad G., Hamid E., Mehrdad G. et al. Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iranian dairy cows // Afr. J. Microbiol. Res. 2012. V. 6 (12). P. 3005–3010.

  55. Motaung T.E., Petrovski K.R., Petzer I.M. et al. Importance of bovine mastitis in Africa // Anim. Health. Res. Rev. 2017. V. 18 (1). P. 58–69.

  56. Nagasawa Y., Kiku Y., Sugawara K. et al. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis // J. Vet. Med. Sci. 2019. V. 81 (1). P. 107–112.

  57. Nilsson A.S. Phage therapy – constraints and possibilities // Ups. J. Med. Sci. 2014. V. 119 (2). P. 192–198.

  58. O’Flaherty S., Coffey A., Meaney W. et al. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus // J. Bacterial. 2005a. V. 187 (20). P. 7161–7164.

  59. O’Flaherty S., Ross R.P., Flynn J. et al. Isolation and characterization of two anti-staphylococcal bacteriophages specific for pathogenic Staphylococcus aureus associated with bovine infections // Lett. Appl. Microbiol. 2005b. V. 41 (6). P. 482–486.

  60. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016. https://amr-review.org/sites/default/files/160518_Final% 20paper_with%20cover.pdf.

  61. Pillai A.M., Sankar V., Rahdar A. et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity // J. Mol. Struct. 2020. V. 1211. P. 128107.

  62. Piotrowska-Tomala K.K., Bah M.M., Jankowska K. et al. Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland during experimentally induced mastitis in vivo and in vitro // Domest. Anim. Endocrinol. 2015. V. 52. P. 90–99.

  63. Pokharel S., Shrestha P., Adhikari B. Antimicrobial use in food animals and human health: time to implement “One Health” approach // Antimicrob. Resist. Infect. Control. 2020. V. 9 (1). P. 1–5.

  64. Porter J., Anderson J., Carter L. et al. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis // J. Dairy Sci. 2016. V. 99 (3). P. 2053–2062.

  65. Qolbaini E.N., Khoeri M.M., Salsabila K. et al. Identification and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus-associated subclinical mastitis isolated from dairy cows in Bogor, Indonesia // Vet. World. 2021. V. 14 (5). P. 1180–1184.

  66. Rojas E.R., Billings G., Odermatt P.D. et al. The outer membrane is an essential load-bearing element in gram-negative bacteria // Nature. 2018. V. 559 (7715). P. 617–621.

  67. Rossi B.F., Bonsaglia E.C.R., Castilho I.G. et al. Genotyping of long term persistent Staphylococcus aureus in bovine subclinical mastitis // Microb. Pathog. 2019. V. 132. P. 45–50.

  68. Rossi R.S., Amarante A.F., Correia L.B.N. et al. Diagnostic accuracy of Somaticell, California Mastitis Test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections // J. Dairy Sci. 2018. V. 101 (11). P. 10220–10229.

  69. Ruegg P.L. A 100-year review: mastitis detection, management, and prevention // J. Dairy Sci. 2017. V. 100 (12). P. 10381–10397.

  70. Ruegg P.L. What is success? A narrative review of research evaluating outcomes of antibiotics used for treatment of clinical mastitis // Front. Vet. Sci. 2021. V. 8. P. 639641.

  71. Saidani M., Messadi L., Soudani A. et al. Epidemiology, antimicrobial resistance, and extended-spectrum beta-lactamase-producing Enterobacteriaceae in clinical bovine mastitis in Tunisia // Microb. Drug Resist. 2018. V. 24 (8). P. 1242–1248.

  72. Samir M.S., Glister C., Mattar D. et al. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro // Reproduction. 2017. V. 154 (1). P. 35–49.

  73. Santos G., Bottino M.P., Santos A.P.C. et al. Subclinical mastitis interferes with ovulation, oocyte and granulosa cell quality in dairy cows // Theriogenology. 2018. V. 119. P. 214–219.

  74. Sarma O., Hussain J. Bovine mastitis: an overview // Vigyan Varta. 2021. V. 2. P. 54–59.

  75. Schmelcher M., Powell A.M., Camp M.J. et al. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis // Appl. Microbiol. Biotechnol. 2015. V. 99 (20). P. 8475–8486.

  76. Scholte C.M., Nelson D.C., Garcia M. et al. Recombinant bacteriophage endolysin PlyC is nontoxic and does not alter blood neutrophil oxidative response in lactating dairy cows // J. Dairy Sci. 2018. V. 101 (7). P. 6419–6423.

  77. Schukken Y.H., Bennett G.J., Zurakowski M.J. et al. Randomized clinical trial to evaluate the efficacy of a 5-day ceftiofur hydrochloride intramammary treatment on nonsevere gram-negative clinical mastitis // J. Dairy Sci. 2011. V. 94 (12). P. 6203–6215.

  78. Sharifi S., Pakdel A., Ebrahimie E., Aryan Y. et al. Prediction of key regulators and downstream targets of E. coli induced mastitis // J. Appl. Genet. 2019. V. 60 (3). P. 367–373.

  79. Sharun K., Dhama K., Tiwari R. et al. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review // Vet. Q. 2021. V. 41 (1). P. 107–136.

  80. Sherwin V.E., Egan S.A., Green M.J., Leigh J.A. Survival of Streptococcus uberis on bedding substrates // Vet. J. 2021. V. 276. P. 105731.

  81. Skarbye A.P., Krogh M.A., Denwood M. et al. Effect of enhanced hygiene on transmission of Staphylococcus aureus, Streptococcus agalactiae and Streptococcus dysgalactiae in dairy herds with automatic milking systems // J. Dairy Sci. 2021. V. 104 (6). P. 7195–7209.

  82. Smith E.M., Willis Z.N., Blakeley M. et al. Bacterial species and their associations with acute and chronic mastitis in suckler ewes // J. Dairy Sci. 2015. V. 98 (10). P. 7025–7033.

  83. Song S., He W., Yang D. et al. Molecular epidemiology of Klebsiella pneumoniae from clinical bovine mastitis in Northern area of China, 2018–2019 // Engineering. 2022. V. 10. P. 146–154.

  84. Sztachańska M., Barański W., Janowski T. et al. Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland // Pol. J. Vet. Sci. 2016. V. 19 (1). P. 119–124.

  85. Tančin V., Mikláš Š., Mačuhová. L. Possible physiological and environmental factors affecting milk production and udder health of dairy cows: a review // Slovak J. Anim. Sci. 2018. V. 51 (1). P. 32–40.

  86. Tanji Y., Tanaka A., Tani K. et al. IgG-dependent aggregation of Staphylococcus aureus inhibits bacteriophage attack // Biochem. Eng. J. 2015. V. 97. P. 17–24.

  87. Tijs S.H.W., Holstege M.M.C., Scherpenzeel C.G.M. et al. Effect of selective dry cow treatment on udder health and antimicrobial usage on Dutch dairy farms // J. Dairy Sci. 2022. V. 105 (6). P. 5381–5392.

  88. Turk R., Rošić N., Kuleš J. et al. Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows // J. Proteom. 2021. V. 244. P. 104277.

  89. Tvarožková K., Tančin V., Holko I. et al. Mastitis in ewes: somatic cell counts, pathogens and antibiotic resistance // J. Microbiol. Biotechnol. Food. Sci. 2019. V. 9 (3). P. 661–670.

  90. Vailati-Riboni M., Coleman D.N., Lopreiato V. et al. Feeding a Saccharomyces cerevisiae fermentation product improves udder health and immune response to a Streptococcus uberis mastitis challenge in mid-lactation dairy cows // J. Anim. Sci. Biotechnol. 2021. V. 12 (1). P. 1–19.

  91. Vander Elst N., Linden S.B., Lavigne R. et al. Characterization of the bacteriophage-derived endolysins plyss2 and plyss9 with in vitro lytic activity against bovine mastitis Streptococcus uberis // Antibiotics. 2020. V. 9 (9). P. 621.

  92. Vrieling M., Boerhout E.M., van Wigcheren G.F. et al. LukMF′ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis // Sci. Rep. 2016. V. 6 (1). P. 1–12.

  93. Wente N., Klocke D., Paduch J.H. et al. Associations between Streptococcus uberis strains from the animal environment and clinical bovine mastitis cases // J. Dairy Sci. 2019. V. 102 (10). P. 9360–9369.

  94. Wente N., Krömker V. Streptococcus dysgalactiae – contagious or environmental? // Animals. 2020. V. 10 (11). P. 2185.

  95. Wittebole X., De Roock S., Opal S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens // Virulence. 2014. V. 5 (1). P. 226–235.

  96. Wu J., Ding Y., Wang J., Wang F. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary epithelial cells // Microb. Pathog. 2018. V. 117. P. 276–284.

  97. Yadav M.M. Prevalence of Staphylococcus aureus in lactating cows with subclinical mastitis and their antibiogram in organized dairy farm, Maharashtra, India // Int. J. Curr. Microbiol. Appl. Sci. 2018. V. 7 (3). P. 3674–3680.

  98. Zaatout N. An overview on mastitis-associated Escherichia coli: pathogenicity, host immunity and the use of alternative therapies // Microbiol. Res. 2022. V. 256. P. 126960.

  99. Zaatout N., Ayachi A., Kecha M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities // J. Appl. Microbiol. 2020. V. 129 (5). P. 1102–1119.

  100. Zadoks R.N., Middleton J.R., McDougall S. et al. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. Part 1 – literature review // J. Mamm. Gland. Biol. Neoplasia. 2011. V. 16. P. 357–372.

  101. Zduńczyk S., Janowski T. Bacteriophages and associated endolysins in therapy and prevention of mastitis and metritis in cows: current knowledge // Anim. Reprod. Sci. 2020. V. 218. P. 106504.

  102. Zhao W., Shi Y., Liu G. et al. Bacteriophage has beneficial effects in a murine model of Klebsiella pneumoniae mastitis // J. Dairy Sci. 2021. V. 104 (3). P. 3474–3484.

  103. Zhao X., Lacasse P. Mammary tissue damage during bovine mastitis: causes and control // J. Anim. Sci. 2008. V. 86 (13). P. 57–65.

  104. Zhou Y., Zhang H., Bao H. et al. The lytic activity of recombinant phage lysin LysKΔamidase against staphylococcal strains associated with bovine and human infections in the Jiangsu province of China // Res. Vet. Sci. 2017. V. 111. P. 113–119.

  105. Zigo F., Elecko J., Vasil M. et al. The occurrence of mastitis and its effect on the milk malondialdehyde concentrations and blood enzymatic antioxidants in dairy cows // Vet. Med. 2019. V. 64 (10). P. 423–432.

Дополнительные материалы отсутствуют.