Успехи современной биологии, 2023, T. 143, № 3, стр. 229-238

Постковидный синдром: патофизиология системных дисрегуляций

О. А. Гомазков *

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Москва, Россия

* E-mail: oleg-gomazkov@yandex.ru

Поступила в редакцию 09.01.2023
После доработки 10.01.2023
Принята к публикации 17.01.2023

Аннотация

Анализируются основные процессы постковидного синдрома как версии продленной патологии острого респираторного заболевания COVID-19. Учитывая разнообразие проявлений постковидной патологии, выделяются основные блоки системных, клеточных и молекулярных дисрегуляций. В качестве основных причин рассматриваются последствия органных поражений в острой фазе COVID-19, персистентная активность “затаенных” патогенов и измененный статус иммунных систем больного. Постковидная патология, как мультисистемный синдром, отражает нарушения основных систем регуляции: стохастическую дезорганизацию иммунных ответов, дисфункцию сосудистого эндотелия, клеточное воспаление, дисбаланс систем свертывания и антитромбоза, девиацию аутоиммунных процессов и др. Эти выводы ориентируют на новые клеточные и биохимические мишени своевременной терапии. Разнообразный характер патогенеза предполагает избирательное использование средств терапии.

Ключевые слова: COVID-19, постковидный синдром, дисфункция эндотелия, иммунотромбоз, аутоиммунные процессы, персистенция патогенов, васкулярная патология

Список литературы

  1. Болиева Л.З., Малявин А.Г., Вялкова А.Б. Длительная персистенция вируса SARS-CoV-2 в организме как возможный механизм патогенеза долгого COVID-19 // Терапия. 2022. Т. 8 (10). С. 90–97.

  2. Гомазков О.А. Covid-19. Патогенез сосудистых поражений, или дьявол кроется в деталях. 2021. М.: ИКАР, 72 с.

  3. Гомазков О.А. Нейротропизм как механизм поражающего действия коронавируса // Успехи соврем. биол. 2022. Т. 142 (4). С. 404–416.

  4. Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19 // Акушерство, гинекол. репрод. 2021. 15 (5). С. 499–514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247

  5. Методические рекомендации “Особенности течения Long-COVID-19 инфекции. Терапевтические и реабилитационные мероприятия” / Ред. А.И. Мартынов (утверждены на ХVI Национальном Конгрессе терапевтов 18.11.2021). 217 с.

  6. Ackermann M, Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N. Engl. J. Med. 2020. V. 383 (2). P. 120–128. https://doi.org/10.1056/NEJMoa2015432

  7. Ahamed J., Laurence J.J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches // Clin. Invest. 2022. V. 132 (15). P. e161167.

  8. Ambrosino P., Bachetti T., D’Anna S.E. et al. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension // J. Cardiovasc. Dev. Dis. 2022. V. 9 (5). P. 136. https://doi.org/10.3390/jcdd9050136

  9. Amenta E.M., Spallone A., Rodriguez-Barradas M.C. et al. Post-acute COVID-19: an overview and approach to classification // Open Forum Infect. Dis. 2020. V. 7 (12). P. ofaa509. https://doi.org/10.1093/ ofid/ofaa509

  10. Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study // BMJ. 2021. V. 372. P. n693. https://doi.org/10.1136/bmj.n693

  11. Babkina A.S., Ostrova I.V., Yadgarov M.Y. et al. The role of von Willebrand factor in the pathogenesis of pulmonary vascular thrombosis in COVID-19 // Viruses. 2022. V. 14 (2). P. 211. https://doi.org/10.3390/v14020211

  12. Bogdanov V.Y., Khirmanov V.N. SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois? // Vasc. Biol. 2022. V. 4 (1). P. R35–R43. https://doi.org/10.1530/VB-22-0004

  13. Castanares-Zapatero D., Chalon P., Kohn L. et al. Pathophysiology and mechanism of long COVID: a comprehensive review // Ann. Med. 2022. V. 54 (1). P. 1473–1487. https://doi.org/10.1080/07853890.2022.2076901

  14. Chang H.W., Leu S., Sunet C.K. et al. Level and value of circulating endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty: in vivo and in vitro studies // Transl. Res. 2010. V. 156 (4). P. 251–263. https://doi.org/10.1016/j.trsl.2010.07.010

  15. Che Mohd Nassir C.M.N., Hashim S., Wong K.K. et al. COVID-19 infection and circulating microparticles – reviewing evidence as microthrombogenic risk factor for cerebral small vessel disease // Mol. Neurobiol. 2021. V. 58 (8). P. 4188–4215. https://doi.org/10.1007/s12035-021-02457-z

  16. Chen Y., Xu Z., Wang P. et al. New-onset autoimmune phenomena post-COVID-19 vaccination // Immunology. 2022. V. 165 (4). P. 386–401. https://doi.org/10.1111/imm.13443

  17. Chioh F.W., Fong S.W., Young B.E. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation // Elife. 2021. V. 10. P. e64909. https://doi.org/10.7554/eLife.64909

  18. Datta S.D., Talwar A., Lee J.T. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection:illness beyond acute infection and public health implications // JAMA. 2020. V. 324 (22). P. 2251–2252. https://doi.org/10.1001/jama.2020.22717

  19. DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details // J. Neurochem. 2016. V. 139. Sup. 2. P. 136–153. https://doi.org/10.1111/jnc.13607

  20. Doeblin P., Steinbeis F., Scannell C.M. et al. Brief research report: quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome // Front. Cardiovasc. Med. 2022. V. 9. P. 877416. https://doi.org/10.3389/fcvm.2022.877416

  21. Dorward D.A., Russell C.D, Um I.H. et al. Tissue-specific immunopathology in fatal COVID-19 // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 192–201. https://doi.org/10.1164/rccm.202008-3265OC

  22. Dotan A., Muller S., Kanduc D. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity // Autoimmun. Rev. 2021. V. 20 (4). P. 102792. https://doi.org/10.1016/j.autrev.2021.102792

  23. Fogarty H., Ward S.E., Townsend L. et al. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in longCOVID syndrome is related to immune dysfunction // J. Thromb. Haemost. 2022. V. 20 (10). P. 2429–2438. https://doi.org/10.1111/jth.15830

  24. Fujinami R.S., von Herrath M.G., Christen U., Whittonl J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease // Clin. Microbiol. Rev. 2006. V. 19. P. 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006

  25. Fujisawa T., Tura-Ceide O., Hunter A. et al. Endothelial progenitor cells do not originate from the bone marrow // Circulation. 2019. V. 140. P. 1524–1526.https://doi.org/10.1161/CIRCULATIONAHA.119.042351

  26. García-Abellán J., Fernández M., Padilla S. et al. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration // Front. Immunol. 2022. V. 13. P. 920627. https://doi.org/10.3389/fimmu.2022.920627

  27. Gomazkov O.A. Damage of the vascular endothelium as a leading mechanism of COVID-19 systemic pathology // Biol. Bull. Rev. 2021. V. 11 (6). P. 559–566. https://doi.org/10.1134/S2079086421060049

  28. Gupta A., Madhavan M.V., Sehgal K. et al. Extrapulmonary manifestations of COVID-19 // Nat. Med. 2020. V. 26. P. 1017–1032. https://doi.org/10.1038/s41591-020-0968-3

  29. Haffke M., Freitag H., Rudolf G. et al. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) // J. Transl. Med. 2022. V. 20. P. 138. https://doi.org/10.1186/s12967-022-03346-2

  30. Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19 // J. Thromb. Haemost. 2020. V. 18 (9). P. 2103–2109. https://doi.org/10.1111/jth.14975

  31. Jacobs J.J.L. Persistent SARS-2 infections contribute to long COVID-19 // Med. Hypotheses. 2021. V. 149. https://doi.org/10.1016/j.mehy.2021.110538

  32. Jud P., Gressenberger P., Muster V. et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection – a cross-sectional study // Front. Cardiovasc. Med. 2021. V. 8. P. 750887. https://doi.org/10.3389/fcvm.2021.750887

  33. Kell D.B., Laubscher G.J., Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications // Biochem. J. 2022. V. 479 (4). P. 537–559. https://doi.org/10.1042/BCJ20220016

  34. Kemp S.A., Collier D.A., Datir R.P. et al. SARS-CoV-2 evolution during treatment of chronic infection // Nature. 2021. V. 592 (7853). P. 277–282. https://doi.org/10.1038/s41586-021-03291-y

  35. Khoshkam Z., Aftabi Y., Stenvinkel P. et al. Recovery scenario and immunity in COVID-19 disease: a new strategy to predict the potential of reinfection // J. Adv. Res. 2021. V. 31. P. 49–60. https://doi.org/10.1016/j.jare.2020.12.013

  36. Kostov K. The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling,and blood pressure regulation // Life (Basel). 2021. V. 11 (9). P. 986. https://doi.org/10.3390/ life11090986

  37. Koutroumpi M., Dimopoulos S., Psarra K. et al. Circulating endothelial and progenitor cells: evidence from acute and long-term exercise effects // World J. Cardiol. 2012. V. 4 (12). P. 312–326. https://doi.org/10.4330/wjc.v4.i12.312

  38. Kruger A., Vlok M., Turner S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system // Cardiovasc. Diabetol. 2022. V. 21 (1). P. 190. https://doi.org/10.1186/s12933-022-01623-4

  39. Ladikou E.E., Sivaloganathan H., Milne K.M. et al. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? // Clin. Med. 2020. V. 20 (5). P. e178–e182. https://doi.org/10.7861/clinmed.2020-0346

  40. Liew A., Barry F., O’Brien T. Endothelial progenitor cells: diagnostic and therapeutic considerations // Bioessays. 2006. V. 28 (3). P. 261–270. https://doi.org/10.1002/bies.20372

  41. Liotti F.M., Menchinelli G., Marchetti S. et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results // JAMA Int. Med. 2020. V. 181. P. 702–704. https://doi.org/10.1001/jamainternmed.2020.7570

  42. Lowenstein C.J., Solomon S.D. Severe COVID-19 is a microvascular disease // Circulation. 2020. V. 142 (17). P. 1609–1611. https://doi.org/10.1161/CIRCULATIONAHA.120.050354

  43. Maltezou H.C., Pavli A., Tsakris A. Post-COVID syndrome: an insight on its pathogenesis // Vaccines (Basel). 2021. V. 9 (5). P. 497. https://doi.org/10.3390/vaccines9050497

  44. Mantovani A., Morrone M.C., Patronoet P. et al. Long Covid: where we stand and challenges ahead. Covid-19 Commission of the Accademia Nazionale dei Lincei // Cell Death Differ. 2022. V. 29 (10). P. 1891–1900. https://doi.org/10.1038/s41418-022-01052-6

  45. Mehandru S., Merad M. Pathological sequelae of long-haul Covid // Nat. Immunol. 2022. V. 23. P. 194–202. https://doi.org/10.1038/s41590-021-01104-y

  46. Ostergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation // Physiol. Rep. 2021. V. 9 (3). P. e14726. https://doi.org/10.14814/phy2.14726

  47. Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. V. 12. P. 698169.

  48. Prasannan N., Heightman M., Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis // Blood Adv. 2022. V. 6 (13). P. 4041–4048. https://doi.org/10.1182/bloodadvances.2021006944

  49. Priya S.P., Sunil P.V., Varmaet S. et al. Direct, indirect, post-infection damages induced by coronavirus in the human body: an overview // Virusdisease. 2022. V. 33 (4). P. 429–444. https://doi.org/10.1007/s13337-022-00793-9

  50. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T. et al. Multiorgan and renal tropism of SARS-CoV-2 // New Engl. J. Med. 2020. V. 383. P. 590–592. https://doi.org/10.1056/NEJMc2011400

  51. Raman B., Cassar M.P., Tunnicliffe E.M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge // EClinicalMedicine. 2021. V. 31. Art.100683. https://doi.org/10.1016/j.eclinm.2020.100683

  52. Ryan F.J., Hope C.M., Masavuli M.G. et al. Long-term perturbation of the peripheral immune system after SARS-CoV-2 infection // BMC Med. 2022. V. 20 (1). P. 26. https://doi.org/10.1186/s12916-021-02228-6

  53. Sarkesh A., Sorkhabi A.D., Sheykhsaran E. et al. Extrapulmonary clinical manifestations in COVID-19 patients // Am. J. Trop. Med. Hyg. 2020. V. 103 (5). P. 1783–1796. https://doi.org/10.4269/ajtmh.20-0986

  54. Scherbakov N., Szklarski M., Hartwiget J. et al. Peripheral endothelial dysfunction in myalgic encephalomyelitis /chronic fatigue syndrome // ESC Heart Fail. 2020. V. 7 (3). P. 1064–1071. https://doi.org/10.1002/ehf2.12633

  55. Sen S., McDonald S.P., Coates P.T.H., Bonder C.S. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease // Clin. Sci. (Lond.). 2011. V. 120. P. 263–283. https://doi.org/10.1042/CS20100429

  56. Siddiqi H.K., Libby P., Ridker P.M. COVID-19 – a vascular disease // Trends Cardiovasc. Med. 2021. V. 31 (1). P. 1–5. https://doi.org/10.1016/j.tcm.2020.10.005

  57. Stein S.R., Ramelli S.C., Grazioliet A. et al. SARS-CoV-2 infection and persistence throughout the human body and brain // Nature. 2022. V. 612 (7941). P. 758–763. https://doi.org/10.1038/s41586-022-05542-y

  58. Sun J., Xiao J., Sunet R. et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids // Emerg. Infect. Dis. 2020. V. 26. P. 1834–1838. https://doi.org/10.3201/eid2608.201097

  59. Tehrani H.A., Darnahal M., Nadji S.A., Haghighil S. COVID-19 re-infection or persistent infection in patient with acute myeloid leukaemia M3: a mini review // New Microb. New Infect. 2021. V. 39. P. 100830. https://doi.org/10.1016/j.nmni.2020.100830

  60. Welte T. SARS-CoV-2-triggered immune reaction: for COVID-19, nothing iIs as old as yesterday’s knowledge // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 156. https://doi.org/10.1164/rccm.202011-4194ED

  61. Wirth K.J., Scheibenbogen C., Friedemann P. An attempt to explain the neurological symptoms of myalgic encephalomyelitis/chronic fatigue syndrome // J. Transl. Med. 2021. V. 19 (1). P. 471. https://doi.org/10.1186/s12967-021-03143-3

  62. Yong S.J., Liu S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies // Rev. Med. Virol. 2021. V. 32 (4). P. e2315. https://doi.org/10.1002/rmv.2315

  63. Zhang J., Tecson K.M., McCullough P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy // Rev. Cardiovasc. Med. 2020. V. 21 (3). P. 315–319. https://doi.org/10.31083/j.rcm.2020.03.12

Дополнительные материалы отсутствуют.