Биологические мембраны: Журнал мембранной и клеточной биологии, 2022, T. 39, № 3, стр. 163-171
Гемостаз и тромбоз. Пространственная организация биохимических процессов на микроуровне
М. А. Пантелеев a, b, c, *, А. М. Шибеко a, b, Д. Ю. Нечипуренко a, b, c, Е. А. Береснева a, Н. А. Подоплелова a, b, А. Н. Свешникова a, b, c
a Центр теоретических проблем физико-химической фармакологии РАН
109029 Москва, Россия
b Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии
им. Дмитрия Рогачева Минздрава России
117198 Москва, Россия
c Московский государственный университет им. М.В. Ломоносова
119991 Москва, Россия
* E-mail: mapanteleev@yandex.ru
Поступила в редакцию 10.12.2021
После доработки 20.01.2022
Принята к публикации 20.01.2022
- EDN: NCXCRU
- DOI: 10.31857/S0233475522030094
Полные тексты статей выпуска доступны только авторизованным пользователям.
Аннотация
Системы свертывания крови и фибринолиза представляют собой ферментативные каскады в плазме крови, управляющие процессами формирования и растворения фибринового сгустка соответственно. Однако критические процессы в обеих системах происходят не в жидкой фазе, а на специализированных “скаффолдах”: двух- или трехмерных матрицах, обеспечивающих особые условия для протекания биохимических реакций. В настоящий момент можно выделить следующие принципиальные категории скаффолдов: а) обогащенные фосфатидилсерином фосфолипидные мембраны, предоставляемые прокоагулянтной субпопуляцией активированных тромбоцитов, а также поврежденным эндотелием, мембранами апоптотических телец в атеросклеротической бляшке, липопротеидами и микровезикулами плазмы, б) комплекс фибрина и белков внеклеточного матрикса, ассоциированный с тромбоцитами и являющийся ведущим скаффолдом для про- и анти-фибринолитических процессов, в) полимеры фосфатов, включая тромбоцитарные полифосфаты и внеклеточные ловушки нейтрофилов. Для некоторых из этих скаффолдов существуют предположения об их физиологической значимости и физическом смысле, в то время как роль других представляется загадочной или, как минимум, патофизиологической. Здесь мы рассмотрим существующие представления о ролях и механизмах участия этих скаффолдов в гемостазе и тромбозе.
Полные тексты статей выпуска доступны только авторизованным пользователям.
Список литературы
Mann K.G., Orfeo T., Butenas S., Undas A., Brummel-Ziedins K. 2009. Blood coagulation dynamics in haemostasis. Hämostaseologie. 29 (1), 7–16.
Shibeko A.M., Panteleev M.A. 2016. Untangling the complexity of blood coagulation network: Use of computational modelling in pharmacology and diagnostics. Brief Bioinform. 17 (3), 429–439.
Panteleev M.A., Andreeva A.A., Lobanov A.I. 2020. Differential drug target selection in blood coagulation: What can we get from computational systems biology models? Curr. Pharm. Des. 26 (18), 2109–2115.
Panteleev M.A., Balandina A.N., Lipets E.N., Ovanesov M.V., Ataullakhanov F.I. 2010. Task–oriented modular decomposition of biological networks: Trigger mechanism in blood coagulation. Biophys. J. 98 (9), 1751–1761.
Shibeko A.M., Chopard B., Hoekstra A.G., Panteleev M.A. 2020. Redistribution of TPA fluxes in the presence of PAI-1 regulates spatial thrombolysis. Biophys. J. 119 (3), 638–651.
Panteleev M.A., Dashkevich N.M., Ataullakhanov F.I. 2015. Hemostasis and thrombosis beyond biochemistry: Roles of geometry, flow and diffusion. Thromb. Res. 136 (4), 699–711.
Dashkevich N.M., Ovanesov M.V., Balandina A.N., Karamzin S.S., Shestakov P.I., Soshitova N.P., Tokarev A.A., Panteleev M.A., Ataullakhanov F.I. 2012. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys. J. 103 (10), 2233–2240.
Balandina A.N., Shibeko A.M., Kireev D.A., Novikova A.A., Shmirev I.I., Panteleev M.A., Ataullakhanov F.I. 2011. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 101 (8), 1816–1824.
Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I. 2010. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4, 5.
Mann K.G., Nesheim M.E., Church W.R., Haley P., Krishnaswamy S. 1990. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 76 (1), 1–16.
Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hämostaseologie. 41 (2), 146–153.
Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. Substrate delivery mechanism and the role of membrane curvature in factor X activation by extrinsic tenase. J. Theor. Biol. 435, 125–133.
Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2006. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J. 273 (2), 374–387.
Panteleev M.A., Saenko E.L., Ananyeva N.M., Ataullakhanov F.I. 2004. Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa. Biochem. J. 381 (Pt 3), 779–794.
Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Y., Obydennyi S.I., Kireev I.I., Gachet C., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2016. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 128 (13), 1745–1755.
Podoplelova N.A., Sveshnikova A.N., Kurasawa J.H., Sarafanov A.G., Chambost H., Vasil’ev S.A., Demina I.A., Ataullakhanov F.I., Alessi M.C., Panteleev M.A. 2016. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization. Biochim. Biophys. Acta. 1858 (6), 1216–1227.
Zakharova N.V., Artemenko E.O., Podoplelova N.A., Sveshnikova A.N., Demina I.A., Ataullakhanov F.I., Panteleev M.A. 2015. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII. PLoS One. 10 (2), e0116665.
Terentyeva V.A., Sveshnikova A.N., Panteleev M.A. 2015. Kinetics and mechanisms of surface-dependent coagulation factor XII activation. J. Theor. Biol. 382, 235–243.
Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., Andersen J., Ataullakhanov F., Panteleev M. 2014. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One. 9 (1), e87692.
Denorme F., Langhauser F., Desender L., Vandenbulcke A., Rottensteiner H., Plaimauer B., Francois O., Andersson T., Deckmyn H., Scheiflinger F., Kleinschnitz C., Vanhoorelbeke K., De Meyer S.F. 2016. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood. 127 (19), 2337–2345.
Gilbert G.E., Novakovic V.A., Shi J., Rasmussen J., Pipe S.W. 2015. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. Blood. 126 (10), 1237–1244.
Laridan E., Denorme F., Desender L., Francois O., Andersson T., Deckmyn H., Vanhoorelbeke K., De Meyer S.F. 2017. Neutrophil extracellular traps in ischemic stroke thrombi. Ann. Neurol. 82 (2), 223–232.
Morrissey J.H., Choi S.H., Smith S.A. 2012. Polyphosphate: An ancient molecule that links platelets, coagulation, and inflammation. Blood. 119 (25), 5972–5979.
Muller F., Mutch N.J., Schenk W.A., Smith S.A., Esterl L., Spronk H.M., Schmidbauer S., Gahl W.A., Morrissey J.H., Renne T. 2009. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 139 (6), 1143–1156.
Smith S.A., Mutch N.J., Baskar D., Rohloff P., Docampo R., Morrissey J.H. 2006. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA. 103 (4), 903–908.
Staessens S., Denorme F., Francois O., Desender L., Dewaele T., Vanacker P., Deckmyn H., Vanhoorelbeke K., Andersson T., De Meyer S.F. 2020. Structural analysis of ischemic stroke thrombi: Histological indications for therapy resistance. Haematologica. 105 (2), 498–507.
Staessens S., Francois O., Desender L., Vanacker P., Dewaele T., Sciot R., Vanhoorelbeke K., Andersson T., De Meyer S.F. 2021. Detailed histological analysis of a thrombectomy-resistant ischemic stroke thrombus: A case report. Thromb. J. 19 (1), 11.
Dohrmann M., Makhoul S., Gross K., Krause M., Pillitteri D., von Auer C., Walter U., Lutz J., Volf I., Kehrel B.E., Jurk K. 2020. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J. 34 (7), 9337–9357.
Nechipurenko D.Y., Receveur N., Yakimenko A.O., Shepelyuk T.O., Yakusheva A.A., Kerimov R.R., Obydennyy S.I., Eckly A., Leon C., Gachet C., Grishchuk E.L., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2019. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler. Thromb. Vasc. Biol. 39 (1), 37–47.
Kovalenko T.A., Giraud M.N., Eckly A., Ribba A.S., Proamer F., Fraboulet S., Podoplelova N.A., Valentin J., Panteleev M.A., Gonelle-Gispert C., Cook S., Lafanechere L., Sveshnikova A.N., Sadoul K. 2021. Asymmetrical forces dictate the distribution and morphology of platelets in blood clots. Cells. 10 (3), 584.
Zhou G.Q., Zhong W.Z. 1982. Diffusion-controlled reactions of enzymes. A comparison between Chou’s model and Alberty-Hammes-Eigen’s model. Eur. J. Biochem. 128 (2–3), 383–387.
Nesheim M.E., Tracy R.P., Mann K.G. 1984. “Clotspeed,” a mathematical simulation of the functional properties of prothrombinase. J. Biol. Chem. 259 (3), 1447–1453.
Obydennyy S.I., Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. 2016. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J. Thromb. Haemost. 14 (9), 1867–1881.
Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2005. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3 (11), 2545–2553.
Sveshnikova A.N., Ataullakhanov F.I, Panteleev M.A. 2015. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. Biosyst. 11 (4), 1052–1060.
Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14 (10), 2045–2057.
Topalov N.N., Kotova Y.N., Vasil’ev S.A., Panteleev M.A. 2012. Identification of signal transduction pathways involved in the formation of platelet subpopulations upon activation. Br. J. Haematol. 157 (1), 105–115.
Topalov N.N., Yakimenko A.O., Canault M., Artemenko E.O., Zakharova N.V., Abaeva A.A., Loosveld M., Ataullakhanov F.I., Nurden A.T., Alessi M.C., Panteleev M.A. 2012. Two types of procoagulant platelets are formed upon physiological activation and are controlled by integrin alpha(IIb)beta(3). Arterioscler. Thromb. Vasc. Biol. 32 (10), 2475–2483.
Yakimenko A.O., Verholomova F.Y., Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102 (10), 2261–2269.
Majumder R., Weinreb G., Lentz B.R. 2005. Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface. Biochemistry. 44 (51), 16998–17006.
Hoffman M., Monroe D.M., 3rd. 2001. A cell-based model of hemostasis. Thromb. Haemost. 85 (6), 958–965.
Panteleev M.A., Ovanesov M.V., Kireev D.A., Shibeko A.M., Sinauridze E.I., Ananyeva N.M., Butylin A.A., Saenko E.L., Ataullakhanov F.I. 2006. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys. J. 90 (5), 1489–1500.
Reitsma S.E., Pang J., Raghunathan V., Shatzel J.J., Lorentz C.U., Tucker E.I., Gruber A., Gailani D., McCarty O.J.T., Puy C. 2021. Role of platelets in regulating activated coagulation factor XI activity. Am. J. Physiol. Cell Physiol. 320 (3), C365–C374.
Hathcock J.J., Nemerson Y. 2004. Platelet deposition inhibits tissue factor activity: In vitro clots are impermeable to factor Xa. Blood. 104 (1), 123–127.
Koklic T., Majumder R., Weinreb G.E., Lentz B.R. 2009. Factor XA binding to phosphatidylserine-containing membranes produces an inactive membrane-bound dimer. Biophys. J. 97 (8), 2232–2241.
Yuan Y., Alwis I., Wu M.C., Kaplan Z., Ashworth K., Bark D., Pham A., Mcfadyen J., Schoenwaelder S.M., Josefsson E.C., Kile B.T. 2017. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci. Trans. Med. 9 (409), eaam5861.
Abaeva A.A., Canault M., Kotova Y.N., Obydennyy S.I., Yakimenko A.O., Podoplelova N.A., Kolyadko V.N., Chambost H., Mazurov A.V., Ataullakhanov F.I., Nurden A.T., Alessi M.C., Panteleev M.A. 2013. Procoagulant platelets form an alpha-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J. Biol. Chem. 288 (41), 29 621–29 632.
Kaplan Z.S., Zarpellon A., Alwis I., Yuan Y., McFadyen J., Ghasemzadeh M., Schoenwaelder S.M., Ruggeri Z.M., Jackson S.P. 2015. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat. Commun. 6, 7835.
Ruggeri Z.M. 2007. The role of von Willebrand factor in thrombus formation. Thromb. Res. 120 Suppl 1, S5–9.
Nieswandt B., Watson S.P. 2003. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 102 (2), 449–461.
Qiu Y., Brown A.C., Myers D.R., Sakurai Y., Mannino R.G., Tran R., Ahn B., Hardy E.T., Kee M.F., Kumar S., Bao G., Barker T.H., Lam W.A. 2014. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc. Natl. Acad. Sci. USA. 111 (40), 14 430–14 435.
Barnes M.J., MacIntyre D.E. 1979. Platelet-reactivity of isolated constituents of the blood vessel wall. Haemostasis. 8 (3–5), 158–170.
Gutierrez E., Petrich B.G., Shattil S.J., Ginsberg M.H., Groisman A., Kasirer-Friede A. 2008. Microfluidic devices for studies of shear-dependent platelet adhesion. Lab. Chip. 8 (9), 1486–1495.
van Geffen J.P., Brouns S.L.N., Batista J., McKinney H., Kempster C., Nagy M., Sivapalaratnam S., Baaten C., Bourry N., Frontini M., Jurk K., Krause M., Pillitteri D., Swieringa F., Verdoold R., Cavill R., Kuijpers M.J.E., Ouwehand W.H., Downes K., Heemskerk J.W.M. 2019. High-throughput elucidation of thrombus formation reveals sources of platelet function variability. Haematologica. 104 (6), 1256–1267.
Welsh J.D., Poventud-Fuentes I., Sampietro S., Diamond S.L., Stalker T.J., Brass L.F. 2017. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature. J. Thromb. Haemost. 15 (3), 526–537.
van der Meijden P.E., Munnix I.C., Auger J.M., Govers-Riemslag J.W., Cosemans J.M., Kuijpers M.J., Spronk H.M., Watson S.P., Renne T., Heemskerk J.W. 2009. Dual role of collagen in factor XII-dependent thrombus formation. Blood. 114 (4), 881–890.
Faxalv L., Boknas N., Strom J.O., Tengvall P., Theodorsson E., Ramstrom S., Lindahl T.L. 2013. Putting polyphosphates to the test: Evidence against platelet-induced activation of factor XII. Blood. 122 (23), 3818–3824.
Thalin C., Hisada Y., Lundstrom S., Mackman N., Wallen H. 2019. Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 39 (9), 1724–1738.
Дополнительные материалы отсутствуют.
Инструменты
Биологические мембраны: Журнал мембранной и клеточной биологии