Биологические мембраны: Журнал мембранной и клеточной биологии, 2022, T. 39, № 3, стр. 172-185

Принципы и проблемы выделения экзосом из биологических жидкостей

Е. И. Якубович a*, А. Г. Полищук a, В. И. Евтушенко a

a Российский научный центр радиологии и хирургических технологий им. академика А. М. Гранова Минздрава России
197758 Санкт-Петербург, Россия

* E-mail: jakubovichelena@mail.ru

Поступила в редакцию 14.01.2022
После доработки 20.01.2022
Принята к публикации 21.01.2022

Аннотация

Экзосомы, подкласс малых мембранных внеклеточных везикул, имеют большой диагностический и терапевтический потенциал, однако отсутствие стандартизированных методов их эффективного выделения и анализа ограничивает внедрение экзосомальных технологий в клиническую практику. В представленном обзоре рассматриваются проблемы, связанные с выделением экзосом из биологических жидкостей, и принципы традиционных и альтернативных методов выделения. Цель представленного обзора – проиллюстрировать разнообразие подходов, основанных на физических и биохимических свойствах экзосом, которые могут быть использованы для выделения экзосом. Обсуждаются достоинства и недостатки разных методов.

Ключевые слова: микровезикулы, экзосомы, биосепарация, методы выделения

Список литературы

  1. van Niel G., D’angelo G., Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228.

  2. Jeppesen D.K., Fenix A.M., Franklin J.L., Higginbotham J.N., Zhang Q., Zimmerman L.J, Liebler D.C., Ping J., Liu Q., Evans R., Fissell W.H., Patton J.G., Rome L.H., Burnette D.T., Coffey R.J. 2019. Reassessment of exosome composition. Cell.177 (2), 428–445.

  3. Tkach M., Théry C. 2016. Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164, 1226–1232.

  4. Mathieu M., Martin-Jaular L., Lavieu G., Théry C. 2019. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17.

  5. Isola A., Chen S. 2016. Exosomes: The messengers of health and disease. Curr. Neuropharmacol. 15, 157–165.

  6. Lin Y., Anderson J.D., Rahnama L.M.A., Gu S.V., Knowlton A.A. 2020. Exosomes and extracellular vesicles in cardiovascular physiology exosomes in disease and regeneration: Biological functions, diagnostics, and beneficial effects. Am. J. Physiol. Heart Circ. Physiol. 319 (6), H1162–H1180.

  7. de Toro J., Herschlik L., Waldner C., Mongini C. 2015. Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Front. Immunol. 6, 203.

  8. Dai J., Su Y., Zhong S., Cong L., Liu B., Yang J., Tao Y., He Z., Chen C. 2020. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Targeted Ther. 5, 145.

  9. Popowski K., Lut, H., Hu S., George A., Dinh P.U., Cheng K. 2020. Exosome therapeutics for lung regenerative medicine. J. Extracel. Vesicles. 9 (1), 1785161.

  10. Zarà M., Amadio P., Campodonic, J., Sandrini L., Barbieri S.S. 2020. Exosomes in cardiovascular diseases. Diagnostics10 (11), 943.

  11. Yang H., Ma Q., Wang Y., Tang Z. 2020. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J. Transl. Med. 18, 32.

  12. Makler A., Asghar W. 2020. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev. Mol. Diagn. 20 (4), 387–400.

  13. Tran P. H., Wang T., Yin W., Tran T.T., Barua H.T., Zhang, Y., Midge S.B., Nguyen T.N.G., Lee B.-J., Duan W. 2019. Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int. J. Pharm. 566, 697–707.

  14. Liang Y., Duan L., Lu J., Xia J. 2021. Engineering exosomes for targeted drug delivery. Theranostics. 11, 3183–3195.

  15. Salunkhe S., Dheeraj Basak M., Chitkara D., Mittal A. 2020. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release. 326, 599–614.

  16. Xu Z., Zeng S., Gong Z., Yan Y. 2020. Exosome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer. 19, 160.

  17. Barros F.M., Carneiro F., Machado J.C., Melo S.A. 2018. Exosomes and immune response in cancer: Friends or foes? Front. Immunol. 9, 730.

  18. Maqsood M., Kang M., Wu X., Chen J., Teng L., Qiu L. 2020. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci. 256, 118002.

  19. Brennan K., Martin K., FitzGerald S.P., O’Sullivan J., Wu Y., Blanco A., Richardson C., Mc Gee M. 2020. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep. 10,1039.

  20. Martins T.S., Catita J., Rosa I.M., da Cruz e Silva O.A.B., Henriques A.G. 2018. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One. 13 (6), e0198820.

  21. Langevin S.M., Kuhnell D., Biesiada J., Zhang X., Medvedovic M., Talaska G.G., Burns K.A., Kasper S. 2020. Comparability of the small RNA secretome across human biofluids concomitantly collected from healthy adults. PLoS One. 15 (4), e0229976.

  22. Buschmann D., Kirchner B., Hermann S., Märte M., Wurmser C., Brandes F., Kotschote S., Bonin M., Steinlein O.K., Pfaffl M.W., Schelling.G., Reithmair M. 2018. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J. Extracel. Vesicles. 7 (1), 1481321.

  23. Mussack V., Wittmann G., Pfaffl M.W. 2019. Comparing small urinary extracellular vesicle purification methods with a view to RNA sequencing—Enabling robust and non-invasive biomarker research. Biomol. Detect. Quantif. 17, 100089.

  24. Zhang H., Freitas D., Kim H.S., Fabijanic K., Li Z., Chen H., Mark M.T., Molina H., Martin A.B., Bojmar L., Fang J., Rampersaud S., Hoshino A., Irina Matei I., Kenific C.M., Nakajima M., Mutvei A.P., Sansone P., Buehring W., Wang H., Jimenez J.P., Cohen-Gould L., Paknejad N., Brendel M., Manova-Todorova K., Magalhães A., Ferreira J.A., Osório H., Silva A.M., Ashish Massey A., Cubillos-Ruiz J.R., Galletti G., Giannakakou P., Cuervo A.M., Blenis J., Schwartz R., Brady M.S., Peinado H., Bromberg J., Matsui H., Reis C.A., Lyden D. 2018. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343.

  25. Sverdlov E.D. 2012. Amedeo Avogadro’s cry: What is 1 μg of exosomes? BioEssays. 34, 873–875.

  26. Johnsen K.B., Gudbergsson J.M., Andresen T.L, Simonsen J.B. 2019. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim. Biophys. Acta Rev. Cancer. 1871 (1), 109–116.

  27. Fernández-Llama P., Khositseth S., Gonzales P.A., Star R.A., Pisitkun T., Knepper M.A. 2010. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 77 (8), 736–742.

  28. Livshits M.A., Khomyakova E., Evtushenko E.G., Lazarev V.N., Kulemin N.A., Semina S.E. 2015. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci. Rep. 5, 17319.

  29. Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Théry C. 2016. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA. 113 (8), E968–E977.

  30. Whiteside T.L. 2015. The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev. Mol. Diagn. 15 (10), 1293–1310.

  31. Singh K., Nalabotala R., Koo K.M., Bose S., Nayak R., Shiddiky M.J. 2021. Separation of distinct exosome subpopulations: Isolation and characterization approaches and their associated challenges. Analyst. 146, 3731–3749.

  32. Raj D.A.A., Fiume I., Capasso G., Pocsfalvi G. 2012. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 81, 1263–1272.

  33. Yu L.L., Zhu J., Liu J.X., Jiang F., Ni W.K., Qu L.S., Ni R.Z., Lu C.H, Xiao M.B. 2018. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed. Res. Int. 2018, 3634563.

  34. van Veldhoven P.P., Baumgart E., Mannaerts G.P. 1996. Iodixanol (optiprep), an improved density gradient medium for the iso-osmotic isolation of rat liver peroxisomes. Anal. Biochem. 237 (1), 17–23.

  35. Li X., Donowitz M. 2008. Fractionation of subcellular membrane vesicles of epithelial and nonepithelial cells by OptiPrep™ density gradient ultracentrifugation. In: Exocytosis and endocytosis. Methods in Molecular Biology, 440. Eds Ivanov A.I., New York: Humana Press, p. 97–110.

  36. Cantin R., Diou J., Bélanger D., Tremblay A. M., Gilbert C. 2008. Discrimination between exosomes and HIV-1: Purification of both vesicles from cell-free supernatants. J. Immunol. Methods. 338 (1–2), 21–30.

  37. Merchant M.L., Powell D.W., Wilkey D.W., Cummins T.D., Deegens J., Rood I.M., McAfee K.J., Fleischer C., Klein E., Klein J.B. 2010. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin. Appl. 4 (1), 84–96.

  38. Gerlach J.Q., Krüger A., Gallogly S., Hanley S.A., Hogan M.C., Ward C.J., Joshi L., Griffin M.D. 2013. Surface glycosylation profiles of urine extracellular vesicles. PLoS One. 8 (9), e74801.

  39. Alvarez M.L., Khosroheidari M., Kanchi Ravi R., Distefano J.K. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 82, 1024–1032.

  40. Andreu Z., Rivas E., Sanguino-Pascual A., Lamana A., Marazuela M., González-Alvaro I., Sánchez-Madrid F., de la Fuente H. Yáñez-Mó M. 2016. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J. Extracel. Vesicles. 5 (1), 31655.

  41. Taylor D.D., Shah S. 2015. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 87, 3–10.

  42. Sidhom K., Obi P.O., Saleem A.A. 2020. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int. J. Mol. Sci. 21 (18), 6466.

  43. Baranyai T., Herczeg K., Onódi Z., Voszka I., Módos K., Marton N., Nagy G., Mäger I., Wood M.J., Andaloussi S.E.I., Pálinkás Z., Kumar V., Nagy P., Ágnes Kittel A., Buzás E.I., Ferdinandy P., Giricz Z. 2015. Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 10 (12), e0145686.

  44. Hagel L., Ostberg M., Andersson T. 1996. Apparent pore size distributions of chromatography media. J. Chromatogr. A. 743 (1), 33–42.

  45. Arntz O.J., Pieters B.C., van Lent P., Koenders M.I., van der Kraan P.M., van de Loo F.A. 2020. An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS One. 15 (7), e0236508.

  46. Gámez-Valero A., Monguió-Tortajada M., Carreras-Planella L., Beyer K., Borràs F.E. 2016. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci. Rep. 6, 33641.

  47. Lohmann L.J., Strube J. 2020. Accelerating biologics manufacturing by modeling: Process integration of precipitation in mAb downstream processing. Processes. 8 (1), 58.

  48. Atha D.H., Ingham K.C. 1981. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 256 (23), 12 108–12 117.

  49. Marenduzzo D., Finan K., Cook P.R. 2006. The depletion attraction: An underappreciated force driving cellular organization. J. Cell Biol. 175 (5), 681–686.

  50. Ludwig A.K., De Miroschedji K., Doeppner T.R., Börger V., Ruesing J., Rebmann V., Durst S., Jansen S., Bremer M., Behrmann E., Singer B.B., Jastrow H., Kuhlmann J.D., Magraoui F.E.I., Meyer H.E., Hermann D.M., Opalka B., Raunser S., Epple M., Horn P.A., Giebel B. 2018. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J. Extracel. Vesicles. 7 (1), 1528109.

  51. Rider M.A., Hurwitz S.N., Meckes D.G. 2016. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6, 23978.

  52. Weng Y., Sui Z., Shan Y., Hu Y., Chen Y., Zhang L., Zhang Y. 2016. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 141 (15), 4640–4646.

  53. Garcia-Romero N., Madurga R., Rackov G., Palacin-Aliana I., Nunez-Torres R., Asensi-Puig A., Carrión-Navarro J., Esteban-Rubio S., Peinado H., González-Neira A., González-Rumayor V., Belda-Iniesta C., Ayuso-Sacido A. 2019. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J. Transl. Med. 17 (1), 75.

  54. Neerukonda S.N., Egan N.A., Patria J., Assakhi I., Tavlarides-Hontz P., Modla S., Muñoz E.R., Hudsond M.B., Parcells M.S. 2020. A comparison of exosome purification methods using serum of Marek’s disease virus (MDV)-vaccinated and-tumor-bearing chickens. Heliyon. 6 (12), e05669.

  55. Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E., Kiseleva E., Pyshnaya I.A., Laktionov P.P. 2021. isolation of extracellular vesicles from biological fluids via the aggregation–precipitation approach for downstream miRNAs detection. Diagnostics. 11 (3), 384.

  56. Grunt M., Failla A.V., Stevic I., Hillebrand T., Schwarzenbach H. 2020. A novel assay for exosomal and cell-free miRNA isolation and quantification. RNA Biol. 17, 425–440.

  57. Hay I.D., Rehman Z.U., Moradali M.F., Wang Y., Rehm B.H. 2013. Microbial alginate production, modification and its applications. Microb. Biotechnol. 6 (6), 637–650.

  58. Deregibus M.C., Figliolini F., D’antico S., Manzini P.M., Pasquino C., De Lena M., Tetta C., Brizzi.M.F., Camussi, G. 2016. Charge-based precipitation of extracellular vesicles. Int. J. Mol. Med. 38 (5), 1359–1366.

  59. Brownlee Z., Lynn K.D., Thorpe P.E, Schroit A.J. 2014. A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J. Immunol. Methods. 407, 120–126.

  60. Clayton A., Court J., Navabi H., Adams M., Mason M.D., Hobot J.A., Newman G.R., Jasani B. 2001. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods. 247 (1–2), 163–174.

  61. Oksvold M.P., Neurauter A., Pedersen K.W. 2015. Magnetic bead-based isolation of exosomes. In: RNA Interference. Methods in Molecular Biology (Methods and Protocols). 1218. Eds Sioud M. New York: Humana Press, p. 465–481.

  62. Ueda K., Ishikawa N., Tatsuguchi A., Saichi N., Fujii R., Nakagawa H. 2014. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci. Rep. 4, 6232.

  63. Zhang K., Yue Y., Wu S., Liu W., Shi J., Zhang Z. 2019. Rapid capture and nondestructive release of extracellular vesicles using aptamer-based magnetic isolation. ACS sensors. 4 (5), 1245–1251.

  64. Song Z., Mao J., Barrero R.A., Wang P., Zhang F., Wang T. 2020. Development of a CD63 aptamer for efficient cancer immunochemistry and immunoaffinity-based exosome isolation. Molecules. 25 (23), 5585.

  65. Zhang N., Sun N., Deng C. 2021. Rapid isolation and proteome analysis of urinary exosome based on double interactions of Fe3O4@TiO2-DNA aptamer. Talanta. 221, 121571.

  66. Liangsupree T., Multia E., Riekkola M.L. 2021. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A. 1636, 461773.

  67. Royo F., Zuñiga-Garcia P., Sanchez-Mosquera P., Egia A., Perez A., Loizaga A., Arceo R., Lacasa I., Rabade, A., Edurne Arrieta E., Bilbao R., Unda M., Carracedo.A., Falcon-Perez J.M. 2016. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J. Extracel. Vesicles. 5 (1), 29497.

  68. Malykh A.G., Malek A., Lokshin A., Evtushenko V. 2018. Simultaneous isolation of exosomes and cfDNA from liquid biopsies using universal kit based on SubX-Matrix TM technology. In: Proceedings of the American Association for Cancer Research Annual Meeting. 2018 Apr 14–18; Chicago, IL. Cancer Res. 2018. 78 (13 Suppl). Abstract nr 1618. https://doi.org/10.1158/1538-7445.am2018-1618

  69. Shtam T., Evtushenko V., Samsonov R., Zabrodskaya Y., Kamyshinsky R., Zabegina L., Verlov N., Burdakov V., Garaeva L., Slyusarenko M., Nikiforova N., Konevega A., Malek A. 2020. Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS One. 15 (11), e0242732.

  70. Kim J., Shin H., Kim J., Kim J., Park J. 2015. Isolation of high-purity extracellular vesicles by extracting proteins using aqueous two-phase system. PLoS One. 10 (6), e0129760.

  71. Shin H., Park Y.H., Kim Y.G., Lee J.Y, Park J. 2018. Aqueous two-phase system to isolate extracellular vesicles from urine for prostate cancer diagnosis. PLoS One. 13 (3), e0194818.

  72. Shin H., Han C., Labuz J.M., Kim J., Kim J., Cho S., Gho Y.S., Takayama S., Park J. 2015. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci. Rep. 5, 13103.

  73. Slyusarenko M., Nikiforova N., Sidina E., Nazarova I., Egorov V., Garmay Y., Merdalimova A., Yevlampieva N., Gorin D., Malek A. 2021. Formation and evaluation of a two-phase polymer system in human plasma as a method for extracellular nanovesicle isolation. Polymers. 13 (3), 458.

  74. Heath N., Grant L., De Oliveira T.M., Rowlinson R., Osteikoetxea X., Dekker N., Overman R. 2018. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci. Rep. 8, 5730.

  75. Kim H., Shin, S. 2021. ExoCAS-2: Rapid and pure isolation of exosomes by anionic exchange using magnetic beads. Biomedicines. 9 (1), 28.

  76. Haj-Ahmad Y., Norgen Biotek Corp. 2018. Methods for extracellular vesicle isolation and selective removal. United States Patent US10160964B2. 2018. Dec 25.

  77. Abhange K., Makler A., Yi Wen Y., Ramnauth N., Mao W., Asghar W., Wan Y. 2021. Small extracellular vesicles in cancer. Bioact. Mater. 6 (11), 3705–3743.

  78. Sitar S., Kejžar A., Pahovnik D., Kogej K., Tušek-Žnidarič M., Lenassi M., Žagar E. 2015. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal. Chem. 87 (18), 9225–9233.

  79. Kim Y.B., Yang J.S., Lee G.B., Moon M.H. 2020. Evaluation of exosome separation from human serum by frit-inlet asymmetrical flow field-flow fractionation and multiangle light scattering. Anal. Chim. Acta. 1124, 137–145.

  80. Morani M., Mai T.D., Krupova Z., Defrenaix P., Multia E., Riekkola M.L., Taverna M. 2020. Electrokinetic characterization of extracellular vesicles with capillary electrophoresis: A new tool for their identification and quantification. Anal. Chim. Acta. 1128, 42–51.

  81. Lin B., Lei Y., Wang J., Zhu L., Wu Y., Zhang H., Wu L., Zhang P., Yang C. 2021. Microfluidic-based exosome analysis for liquid biopsy. Small Methods. 5 (3), 2001131.

  82. Kugeratski F.G., Hodge K., Lilla S., McAndrews K.M., Zhou X., Hwang R.F., Zanivan S., Raghu Kalluri R. 2021. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23 (6), 631–641.

Дополнительные материалы отсутствуют.