Биологические мембраны: Журнал мембранной и клеточной биологии, 2022, T. 39, № 6, стр. 419-430

Рецепторы SARS-CoV-2 и их участие в инфицировании клеток

П. П. Авдонин a, Е. Ю. Рыбакова a, С. К. Труфанов a, П. В. Авдонин a*

a Институт биологии развития им. Н.К. Кольцова РАН
119334 Москва, Россия

* E-mail: pvavdonin@yandex.ru

Поступила в редакцию 10.07.2022
После доработки 30.07.2022
Принята к публикации 01.08.2022

Аннотация

Пандемия новой коронавирусной инфекции (COVID-19), вызванная вирусом SARS-CoV-2, многократно превзошла по масштабам эпидемии, вызванные SARS-CoV и MERS-CoV. Причиной этого стало наличие в белковой последовательности SARS-CoV-2 участков, обеспечивающих взаимодействие с более широким спектром рецепторных белков на поверхности клеток хозяина. В обзоре рассмотрены как уже известные рецепторы, общие для SARS-CoV и SARS-CoV-2, так и новые рецепторы, специфичные для SARS-CoV-2.

Ключевые слова: коронавирус SARS-CoV-2, рецепторы, фурин, катепсин L, ACE2, нейропилин, CD147, CD209, гепаран сульфат, GRP78, ASGR1, KREMEN1, тирозиновая протеинкиназа AXL

Список литературы

  1. Peeri N.C., Shrestha N., Rahman M.S., Zaki R., Tan Z., Bibi S., Baghbanzadeh M., Aghamohammadi N., Zhang W., Haque U. 2020. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol. 49, 717–726. https://doi.org/10.1093/ije/dyaa033

  2. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Muller M.A., Drosten C., Pohlmann S. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271–280 e278. https://doi.org/10.1016/j.cell.2020.02.052

  3. Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. 2020. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA. 117, 11 727–11 734. https://doi.org/10.1073/pnas.2003138117

  4. Bayati A., Kumar R., Francis V., McPherson P.S. 2021. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306

  5. Wang S., Qiu Z., Hou Y., Deng X., Xu W., Zheng T., Wu P., Xie S., Bian W., Zhang C., Sun Z., Liu K., Shan C., Lin A., Jiang S., Xie Y., Zhou Q., Lu L., Huang J., Li X. 2021. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 31, 126–140. https://doi.org/10.1038/s41422-020-00460-y

  6. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. 2003. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811. https://doi.org/10.1128/jvi.77.16.8801-8811.2003

  7. Schibli D.J., Weissenhorn W. 2004. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Mol. Membr. Biol. 21, 361–371. https://doi.org/10.1080/09687860400017784

  8. Huang Y., Yang C., Xu X.F., Xu W., Liu S.W. 2020. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149. https://doi.org/10.1038/s41401-020-0485-4

  9. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367, 1260–1263. https://doi.org/10.1126/science.abb2507

  10. Cai Y., Zhang J., Xiao T., Peng H., Sterling S.M., Walsh R.M., Jr., Rawson S., Rits-Volloch S., Chen B. 2020. Distinct conformational states of SARS-CoV-2 spike protein. Science. 369, 1586–1592. https://doi.org/10.1126/science.abd4251

  11. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181, 281–292 e286. https://doi.org/10.1016/j.cell.2020.02.058

  12. Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral. Res. 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742

  13. Zhang Q., Xiang R., Huo S., Zhou Y., Jiang S., Wang Q., Yu F. 2021. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target Ther. 6, 233. https://doi.org/10.1038/s41392-021-00653-w

  14. Guney C., Akar F. 2021. Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J. Pharm. Pharm. Sci. 24, 84–93. https://doi.org/10.18433/jpps31455

  15. Zhao M.M., Yang W.L., Yang F.Y., Zhang L., Huang W.J., Hou W., Fan C.F., Jin R.H., Feng Y.M., Wang Y.C., Yang J.K. 2021. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct. Target Ther. 6, 134. https://doi.org/10.1038/s41392-021-00558-8

  16. Zhao M.M., Zhu Y., Zhang L., Zhong G., Tai L., Liu S., Yin G., Lu J., He Q., Li M.J., Zhao R.X., Wang H., Huang W., Fan C., Shuai L., Wen Z., Wang C., He X., Chen Q., Liu B., Xiong X., Bu Z., Wang Y., Sun F., Yang J.K. 2022. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discov. 8, 53. https://doi.org/10.1038/s41421-022-00419-w

  17. Padmanabhan P., Desikan R., Dixit N.M. 2020. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput. Biol. 16, e1008461. https://doi.org/10.1371/journal.pcbi.1008461

  18. Prasad K., AlOmar S.Y., Almuqri E.A., Rudayni H.A., Kumar V. 2021. Genomics-guided identification of potential modulators of SARS-CoV-2 entry proteases, TMPRSS2 and Cathepsins B/L. PLoS One. 16, e0256141. https://doi.org/10.1371/journal.pone.0256141

  19. Prasad K., Ahamad S., Kanipakam H., Gupta D., Kumar V. 2021. Simultaneous Inhibition of SARS-CoV-2 Entry Pathways by Cyclosporine. ACS Chem. Neurosci. 12, 930–944. https://doi.org/10.1021/acschemneuro.1c00019

  20. Evans J.P., Liu S.L. 2021. Role of host factors in SARS-CoV-2 entry. J. Biol. Chem. 297, 100847. https://doi.org/10.1016/j.jbc.2021.100847

  21. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. 2005. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA. 102, 12543–12547. https://doi.org/10.1073/pnas.0503203102

  22. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426, 450–454. https://doi.org/10.1038/nature02145

  23. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., Liu Y., Zheng D., Leibbrandt A., Wada T., Slutsky A.S., Liu D., Qin C., Jiang C., Penninger J.M. 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879. https://doi.org/10.1038/nm1267

  24. Lin C.R., Bahmed K., Simborio H., Hayek H., Bolla S., Marchetti N., Criner G.J., Kosmider B. 2021. Expression of SARS-CoV-2 entry factors in human alveolar type II cells in aging and emphysema. Biomedicines. 9. https://doi.org/10.3390/biomedicines9070779

  25. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7

  26. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 367, 1444–1448. https://doi.org/10.1126/science.abb2762

  27. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., Breitbart R.E., Acton S. 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, E1-9. https://doi.org/10.1161/01.res.87.5.e1

  28. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. 2000. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33 238–33 243. https://doi.org/10.1074/jbc.M002615200

  29. Hikmet F., Mear L., Edvinsson A., Micke P., Uhlen M., Lindskog C. 2020. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16, e9610. https://doi.org/10.15252/msb.20209610

  30. Li J., Gao J., Xu Y.P., Zhou T.L., Jin Y.Y., Lou J.N. 2007. Expression of severe acute respiratory syndrome coronavirus receptors, ACE2 and CD209L in different organ derived microvascular endothelial cells. Zhonghua Yi Xue Za Zhi. 87, 833–837.

  31. Han X., Zhou Z., Fei L., Sun H., Wang R., Chen Y., Chen H., Wang J., Tang H., Ge W., Zhou Y., Ye F., Jiang M., Wu J., Xiao Y., Jia X., Zhang T., Ma X., Zhang Q., Bai X., Lai S., Yu C., Zhu L., Lin R., Gao Y., Wang M., Wu Y., Zhang J., Zhan R., Zhu S., Hu H., Wang C., Chen M., Huang H., Liang T., Chen J., Wang W., Zhang D., Guo G. 2020. Construction of a human cell landscape at single-cell level. Nature. 581, 303–309. https://doi.org/10.1038/s41586-020-2157-4

  32. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., Zhang Z., Fan P., Dong Y., Yang Y., Chen Z., Guo Y., Zhang J., Li Y., Song X., Chen Y., Xia L., Fu L., Hou L., Xu J., Yu C., Li J., Zhou Q., Chen W. 2020. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 369, 650–655. https://doi.org/10.1126/science.abc6952

  33. Brouwer P.J.M., Caniels T.G., van der Straten K., Snitselaar J.L., Aldon Y., Bangaru S., Torres J.L., Okba N.M.A., Claireaux M., Kerster G., Bentlage A.E.H., van Haaren M.M., Guerra D., Burger J.A., Schermer E.E., Verheul K.D., van der Velde N., van der Kooi A., van Schooten J., van Breemen M.J., Bijl T.P.L., Sliepen K., Aartse A., Derking R., Bontjer I., Kootstra N.A., Wiersinga W.J., Vidarsson G., Haagmans B.L., Ward A.B., de Bree G.J., Sanders R.W., van Gils M.J. 2020. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 369, 643–650. https://doi.org/10.1126/science.abc5902

  34. Daly J.L., Simonetti B., Klein K., Chen K.E., Williamson M.K., Anton-Plagaro C., Shoemark D.K., Simon-Gracia L., Bauer M., Hollandi R., Greber U.F., Horvath P., Sessions R.B., Helenius A., Hiscox J.A., Teesalu T., Matthews D.A., Davidson A.D., Collins B.M., Cullen P.J., Yamauchi Y. 2020. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 370, 861–865. https://doi.org/10.1126/science.abd3072

  35. Fujisawa H., Kitsukawa T., Kawakami A., Takagi S., Shimizu M., Hirata T. 1997. Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res. 290, 465–470. https://doi.org/10.1007/s004410050954

  36. Telley L., Cadilhac C., Cioni J.M., Saywell V., Jahannault-Talignani C., Huettl R.E., Sarrailh-Faivre C., Dayer A., Huber A.B., Ango F. 2016. Dual function of NRP1 in axon guidance and subcellular target recognition in cerebellum. Neuron. 91, 1276–1291. https://doi.org/10.1016/j.neuron.2016.08.015

  37. Shimizu M., Murakami Y., Suto F., Fujisawa H. 2000. Determination of cell adhesion sites of neuropilin-1. J. Cell Biol. 148, 1283–1293. https://doi.org/10.1083/jcb.148.6.1283

  38. Soker S., Takashima S., Miao H.Q., Neufeld G., Klagsbrun M. 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 92, 735–745. https://doi.org/10.1016/s0092-8674(00)81402-6

  39. Li Z.L., Buck M. 2021. Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of Spike protein S1 and S2. Biophys. J. 120, 2828–2837. https://doi.org/10.1016/j.bpj.2021.05.026

  40. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., van der Meer F., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Osterlund P., Joensuu M., Meunier F.A., Butcher S.J., Winkler M.S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. 2020. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 370, 856–860. https://doi.org/10.1126/science.abd2985

  41. Gao C.C., Li M., Deng W., Ma C.H., Chen Y.S., Sun Y.Q., Du T., Liu Q.L., Li W.J., Zhang B., Sun L., Liu S.M., Li F., Qi F., Qu Y., Ge X., Liu J., Wang P., Niu Y., Liang Z., Zhao Y.L., Huang B., Peng X.Z., Yang Y., Qin C., Tong W.M., Yang Y.G. 2022. Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein Cell. https://doi.org/10.1007/s13238-022-00915-5

  42. Baindara P., Roy D., Mandal S.M., Schrum A.G. 2022. Conservation and enhanced binding of SARS-CoV-2 Omicron spike protein to coreceptor neuropilin-1 predicted by docking analysis. Infect. Dis. Rep. 14, 243–249. https://doi.org/10.3390/idr14020029

  43. Kolaric A., Jukic M., Bren U. 2022. Novel small-molecule inhibitors of the SARS-CoV-2 spike protein binding to neuropilin 1. Pharmaceuticals (Basel). 15 (2), 165. https://doi.org/10.3390/ph15020165

  44. Ait-Ali N., Fridlich R., Millet-Puel G., Clerin E., Delalande F., Jaillard C., Blond F., Perrocheau L., Reichman S., Byrne L.C., Olivier-Bandini A., Bellalou J., Moyse E., Bouillaud F., Nicol X., Dalkara D., van Dorsselaer A., Sahel J.A., Leveillard T. 2015. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 161, 817–832. https://doi.org/10.1016/j.cell.2015.03.023

  45. Muramatsu T. 2016. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J. Biochem. 159, 481–490. https://doi.org/10.1093/jb/mvv127

  46. Pushkarsky T., Zybarth G., Dubrovsky L., Yurchenko V., Tang H., Guo H., Toole B., Sherry B., Bukrinsky M. 2001. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc. Natl. Acad. Sci. USA. 98, 6360–6365. https://doi.org/10.1073/pnas.111583198

  47. Crosnier C., Bustamante L.Y., Bartholdson S.J., Bei A.K., Theron M., Uchikawa M., Mboup S., Ndir O., Kwiatkowski D.P., Duraisingh M.T., Rayner J.C., Wright G.J. 2011. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 480, 534–537. https://doi.org/10.1038/nature10606

  48. Fenizia C., Galbiati S., Vanetti C., Vago R., Clerici M., Tacchetti C., Daniele T. 2021. SARS-CoV-2 entry: At the crossroads of CD147 and ACE2. Cells. 10 (6), 1434. https://doi.org/10.3390/cells10061434

  49. Wang K., Chen W., Zhang Z., Deng Y., Lian J.Q., Du P., Wei D., Zhang Y., Sun X.X., Gong L., Yang X., He L., Zhang L., Yang Z., Geng J.J., Chen R., Zhang H., Wang B., Zhu Y.M., Nan G., Jiang J.L., Li L., Wu J., Lin P., Huang W., Xie L., Zheng Z.H., Zhang K., Miao J.L., Cui H.Y., Huang M., Zhang J., Fu L., Yang X.M., Zhao Z., Sun S., Gu H., Wang Z., Wang C.F., Lu Y., Liu Y.Y., Wang Q.Y., Bian H., Zhu P., Chen Z.N. 2020. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target Ther. 5, 283. https://doi.org/10.1038/s41392-020-00426-x

  50. Geng J., Chen L., Yuan Y., Wang K., Wang Y., Qin C., Wu G., Chen R., Zhang Z., Wei D., Du P., Zhang J., Lin P., Zhang K., Deng Y., Xu K., Liu J., Sun X., Guo T., Yang X., Wu J., Jiang J., Li L., Zhang K., Wang Z., Zhang J., Yan Q., Zhu H., Zheng Z., Miao J., Fu X., Yang F., Chen X., Tang H., Zhang Y., Shi Y., Zhu Y., Pei Z., Huo F., Liang X., Wang Y., Wang Q., Xie W., Li Y., Shi M., Bian H., Zhu P., Chen Z.N. 2021. CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants delta, alpha, beta, and gamma. Signal Transduct. Target Ther. 6, 347. https://doi.org/10.1038/s41392-021-00760-8

  51. Xu C., Wang A., Geng K., Honnen W., Wang X., Bruiners N., Singh S., Ferrara F., D’Angelo S., Bradbury A.R.M., Gennaro M.L., Liu D., Pinter A., Chang T.L. 2021. Human immunodeficiency viruses pseudotyped with SARS-CoV-2 spike proteins infect a broad spectrum of human cell lines through multiple entry mechanisms. Viruses. 13. https://doi.org/10.3390/v13060953

  52. Badeti S., Jiang Q., Naghizadeh A., Tseng H.C., Bushkin Y., Marras S.A.E., Nisa A., Tyagi S., Chen F., Romanienko P., Yehia G., Evans D., Lopez-Gonzalez M., Alland D., Russo R., Gause W., Shi L., Liu D. 2022. Development of a novel human CD147 knock-in NSG mouse model to test SARS-CoV-2 viral infection. Res. Sq. rs.3.rs-1431484. https://doi.org/10.21203/rs.3.rs-1431484/v1

  53. Xia P., Dubrovska A. 2020. Tumor markers as an entry for SARS-CoV-2 infection? FEBS J. 287 (17), 3677–3680.  https://doi.org/10.1111/febs.15499

  54. Shilts J., Crozier T.W.M., Greenwood E.J.D., Lehner P.J., Wright G.J. 2021. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci. Rep. 11, 413. https://doi.org/10.1038/s41598-020-80464-1

  55. Ragotte R.J., Pulido D., Donnellan F.R., Hill M.L., Gorini G., Davies H., Brun J., McHugh K., King L.D.W., Skinner K., Miura K., Long C.A., Zitzmann N., Draper S.J. 2021. Human basigin (CD147) does not directly interact with SARS-CoV-2 spike glycoprotein. mSphere. 6, e0064721. https://doi.org/10.1128/mSphere.00647-21

  56. Zhou Y.Q., Wang K., Wang X.Y., Cui H.Y., Zhao Y., Zhu P., Chen Z.N. 2022. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg. Microbes Infect. 11, 1135–1144. https://doi.org/10.1080/22221751.2022.2059403

  57. De Pasquale V., Quiccione M.S., Tafuri S., Avallone L., Pavone L.M. 2021. Heparan sulfate proteoglycans in viral infection and treatment: A special focus on SARS-CoV-2. Int. J. Mol. Sci. 22. https://doi.org/10.3390/ijms22126574

  58. Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., Thacker B.E., Glass C.A., Yang Z., Torres J.L., Golden G.J., Bartels P.L., Porell R.N., Garretson A.F., Laubach L., Feldman J., Yin X., Pu Y., Hauser B.M., Caradonna T.M., Kellman B.P., Martino C., Gordts P., Chanda S.K., Schmidt A.G., Godula K., Leibel S.L., Jose J., Corbett K.D., Ward A.B., Carlin A.F., Esko J.D. 2020. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 183, 1043–1057. https://doi.org/10.1016/j.cell.2020.09.033

  59. Tandon R., Sharp J.S., Zhang F., Pomin V.H., Ashpole N.M., Mitra D., McCandless M.G., Jin W., Liu H., Sharma P., Linhardt R.J. 2021. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 95. https://doi.org/10.1128/JVI.01987-20

  60. Khoo U.S., Chan K.Y., Chan V.S., Lin C.L. 2008. DC-SIGN and L-SIGN: The SIGNs for infection. J. Mol. Med. (Berl.). 86, 861–874. https://doi.org/10.1007/s00109-008-0350-2

  61. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J., Thomas W.D., Jr., Thackray L.B., Young M.D., Mason R.J., Ambrosino D.M., Wentworth D.E., Demartini J.C., Holmes K.V. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA. 101, 15748–15753. https://doi.org/10.1073/pnas.0403812101

  62. Amraie R., Napoleon M.A., Yin W., Berrigan J., Suder E., Zhao G., Olejnik J., Gummuluru S., Muhlberger E., Chitalia V., Rahimi N. 2020. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells. bioRxiv. https://doi.org/10.1101/2020.06.22.165803

  63. Amraei R., Yin W., Napoleon M.A., Suder E.L., Berrigan J., Zhao Q., Olejnik J., Chandler K.B., Xia C., Feldman J., Hauser B.M., Caradonna T.M., Schmidt A.G., Gummuluru S., Muhlberger E., Chitalia V., Costello C.E., Rahimi N. 2021. CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Cent Sci. 7, 1156–1165. https://doi.org/10.1021/acscentsci.0c01537

  64. Thepaut M., Luczkowiak J., Vives C., Labiod N., Bally I., Lasala F., Grimoire Y., Fenel D., Sattin S., Thielens N., Schoehn G., Bernardi A., Delgado R., Fieschi F. 2021. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathog. 17, e1009576. https://doi.org/10.1371/journal.ppat.1009576

  65. Kondo Y., Larabee J.L., Gao L., Shi H., Shao B., Hoover C.M., McDaniel J.M., Ho Y.C., Silasi-Mansat R., Archer-Hartmann S.A., Azadi P., Srinivasan R.S., Rezaie A.R., Borczuk A., Laurence J.C., Lupu F., Ahamed J., McEver R.P., Papin J.F., Yu Z., Xia L. 2021. L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight. 6. https://doi.org/10.1172/jci.insight.148999

  66. Lu Q., Liu J., Zhao S., Gomez Castro M.F., Laurent-Rolle M., Dong J., Ran X., Damani-Yokota P., Tang H., Karakousi T., Son J., Kaczmarek M.E., Zhang Z., Yeung S.T., McCune B.T., Chen R.E., Tang F., Ren X., Chen X., Hsu J.C.C., Teplova M., Huang B., Deng H., Long Z., Mudianto T., Jin S., Lin P., Du J., Zang R., Su T.T., Herrera A., Zhou M., Yan R., Cui J., Zhu J., Zhou Q., Wang T., Ma J., Koralov S.B., Zhang Z., Aifantis I., Segal L.N., Diamond M.S., Khanna K.M., Stapleford K.A., Cresswell P., Liu Y., Ding S., Xie Q., Wang J. 2021. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity. 54, 1304–1319 e1309. https://doi.org/10.1016/j.immuni.2021.05.006

  67. Pollastri S., Delaunay C., Thepaut M., Fieschi F., Bernardi A. 2022. Glycomimetic ligands block the interaction of SARS-CoV-2 spike protein with C-type lectin co-receptors. Chem. Commun. (Camb). 58, 5136–5139. https://doi.org/10.1039/d2cc00121g

  68. Ibrahim I.M., Abdelmalek D.H., Elfiky A.A. 2019. GRP78: A cell’s response to stress. Life Sci. 226, 156–163. https://doi.org/10.1016/j.lfs.2019.04.022

  69. Elfiky A.A., Baghdady A.M., Ali S.A., Ahmed M.I. 2020. GRP78 targeting: Hitting two birds with a stone. Life Sci. 260, 118317. https://doi.org/10.1016/j.lfs.2020.118317

  70. Ibrahim I.M., Abdelmalek D.H., Elshahat M.E., Elfiky A.A. 2020. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect. 80, 554–562. https://doi.org/10.1016/j.jinf.2020.02.026

  71. Carlos A.J., Ha D.P., Yeh D.W., Van Krieken R., Tseng C.C., Zhang P., Gill P., Machida K., Lee A.S. 2021. The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. J. Biol. Chem. 296, 100759. https://doi.org/10.1016/j.jbc.2021.100759

  72. Morizono K., Chen I.S. 2014. Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290. https://doi.org/10.1128/JVI.03287-13

  73. Gu Y., Cao J., Zhang X., Gao H., Wang Y., Wang J., He J., Jiang X., Zhang J., Shen G., Yang J., Zheng X., Hu G., Zhu Y., Du S., Zhu Y., Zhang R., Xu J., Lan F., Qu D., Xu G., Zhao Y., Gao D., Xie Y., Luo M., Lu Z. 2022. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res. 32, 24–37. https://doi.org/10.1038/s41422-021-00595-6

  74. Nakamura T., Nakamura T., Matsumoto K. 2008. The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology. J. Cell Mol. Med. 12, 391–408.

  75. Mao B., Wu W., Davidson G., Marhold J., Li M., Mechler B.M., Delius H., Hoppe D., Stannek P., Walter C., Glinka A., Niehrs C. 2002. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 417, 664–667. https://doi.org/10.1038/nature756

  76. Staring J., van den Hengel L.G., Raaben M., Blomen V.A., Carette J.E., Brummelkamp T.R. 2018. KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses. Cell Host Microbe. 23, 636–643 e635. https://doi.org/10.1016/j.chom.2018.03.019

  77. Hoober J.K. 2020. ASGR1 and its enigmatic relative, CLEC10A. Int. J. Mol. Sci. 21. 48818. https://doi.org/10.3390/ijms21144818

  78. Saunier B., Triyatni M., Ulianich L., Maruvada P., Yen P., Kohn L.D. 2003. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J. Virol. 77, 546–559. https://doi.org/10.1128/jvi.77.1.546-559.2003

  79. Wei C., Wan L., Yan Q., Wang X., Zhang J., Yang X., Zhang Y., Fan C., Li D., Deng Y., Sun J., Gong J., Yang X., Wang Y., Wang X., Li J., Yang H., Li H., Zhang Z., Wang R., Du P., Zong Y., Yin F., Zhang W., Wang N., Peng Y., Lin H., Feng J., Qin C., Chen W., Gao Q., Zhang R., Cao Y., Zhong H. 2020. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab. 2, 1391–1400. https://doi.org/10.1038/s42255-020-00324-0

  80. Kluck G.E.G., Yoo J.A., Sakarya E.H., Trigatti B.L. 2021. Good Cholesterol Gone Bad? HDL and COVID-19. Int. J. Mol. Sci. 22. https://doi.org/10.3390/ijms221910182

  81. Shen W.J., Asthana S., Kraemer F.B., Azhar S. 2018. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J. Lipid Res. 59, 1114–1131. https://doi.org/10.1194/jlr.R083121

  82. Chen J., Fan J., Chen Z., Zhang M., Peng H., Liu J., Ding L., Liu M., Zhao C., Zhao P., Zhang S., Zhang X., Xu J. 2021. Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proc. Natl. Acad. Sci. USA. 118. https://doi.org/10.1073/pnas.2111011118

Дополнительные материалы отсутствуют.

Инструменты

Биологические мембраны: Журнал мембранной и клеточной биологии