Биологические мембраны: Журнал мембранной и клеточной биологии, 2023, T. 40, № 3, стр. 155-171

BAR-домен-содержащие белки как возможные регуляторы белковой жидкой фазы в нервных окончаниях в центральной нервной системе

А. Г. Шишков a, Н. В. Нифантова a, О. М. Коренькова a, Е. С. Сопова ab, Л. Бродин b, О. В. Шупляков ab*

a Санкт-Петербургский государственный университет, Институт трансляционной биомедицины, лаборатория биологии синапсов
199034 Санкт-Петербург, Россия

b Отдел нейронаук, Каролинский институт
17177 Стокгольм, Швеция

* E-mail: oleg.shupliakov@ki.se

Поступила в редакцию 10.11.2022
После доработки 18.12.2022
Принята к публикации 20.12.2022

Аннотация

BAR-белки являются одними из ключевых компонентов секреторного везикулярного цикла в нервных окончаниях. Они участвуют в регуляции секреции нейромедиаторов при слиянии синаптических везикул с пресинаптической мембраной, а также в рециркуляции везикул в результате эндоцитоза. Локализация этих белков в зонах нервных окончаний, где формируются жидкие белковые фазы, предполагает дополнительные функции этих молекул. В данном обзоре мы обсуждаем функции BAR-домен-содержащих белков на различных этапах секреторного цикла, включая их возможную роль в регуляции формирования белковых жидких фаз в нервных окончаниях при синаптической активности. Мы предполагаем, что BAR-белки, помимо регуляции экзо- и эндоцитоза, играют важную роль в организации резервного пула везикул и на промежуточных этапах секреторного цикла.

Ключевые слова: синапс, цикл синаптических везикул, экзоцитоз, эндоцитоз, BAR-белки, разделение жидких фаз

Список литературы

  1. Sakamuro D., Elliott K.J., Wechsler-Reya R., Prendergast G.C. 1996. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet. 14, 69–77.

  2. Lichte B., Veh R.W., Meyer H.E., Kilimann M.W. 1992. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J. 11, 2521–2530.

  3. Sivadon P., Bauer F., Aigle M., Crouzet M. 1995. Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: The Rvs161 protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet. 246, 485–495.

  4. Nishimura T., Morone N., Suetsugu S. 2018. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem. Soc. Trans. 46, 379–389.

  5. Itoh T., De Camilli P. 2006. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta. 1761, 897–912.

  6. Frost A., Unger V.M., De Camilli P. 2009. The BAR domain superfamily: Membrane-molding macromolecules. Cell. 137, 191–196.

  7. Peter B.J., Kent H.M., Mills I.G., Vallis Y., Butler P.J., Evans P.R., McMahon H.T. 2004. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science. 303, 495–499.

  8. Weissenhorn W. 2005. Crystal structure of the endophilin-A1 BAR domain. J. Mol. Biol. 351, 653–661.

  9. Gallop J.L., Jao C.C., Kent H.M., Butler P.J., Evans P.R., Langen R., McMahon H.T. 2006. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910.

  10. Itoh T., Erdmann K.S., Roux A., Habermann B., Werner H., De Camilli P. 2005. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Curr. Biol. 9, 791–804.

  11. Frost A., De Camilli P., Unger V.M. 2007. F-BAR proteins join the BAR family fold. Structure. 15, 751–753.

  12. Ahmed S., Goh W.I., Bu W. 2010. I-BAR domains, IRSp53 and filopodium formation. Semin. Cell. Dev. Biol. 21, 350–356.

  13. Zhao H., Pykalainen A., Lappalainen P. 2011. I-BAR domain proteins: Linking actin and plasma membrane dynamics. Curr. Opin. Cell Biol. 23, 14–21.

  14. Chatzi C., Westbrook G. L. 2021. Revisiting I-BAR proteins at central synapses. Front. Neural Circuits. 15, 787436.

  15. Takei K., Slepnev V.I., Haucke V., De Camilli P. 1999. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell. Biol. 1, 33–39.

  16. Farsad K., Ringstad N., Takei K., Floyd S.R., Rose K., De Camilli P. 2001. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell. Biol. 155, 193–200.

  17. Richnau N., Fransson A., Farsad K., Aspenstrom P. 2004. RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible for binding to membrane lipids and tubulation of liposomes. Biochem. Biophys. Res. Commun. 320, 1034–1042.

  18. Carman P.J., Dominguez R. 2018. BAR domain proteins–a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys. Rev. 10, 1587–1604.

  19. Ringstad N., Nemoto Y., De Camilli P. 1997. The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl. Acad. Sci. USA. 94, 8569–8574.

  20. Shupliakov O., Low P., Grabs D., Gad H., Chen H., David C., Takei K., De Camilli P., Brodin L. 1997. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science. 276, 259– 263.

  21. Kelley C.F., Messelaar E.M., Eskin T.L., Wang S., Song K., Vishnia K., Becalska A.N., Shupliakov O., Hagan M.F., Danino D., Sokolova O.S., Nicastro D., Rodal A.A. 2015. Membrane charge directs the outcome of F-BAR domain lipid binding and autoregulation. Cell Rep. 13, 2597–2609.

  22. Kojima C., Hashimoto A., Yabuta I., Hirose M., Hashimoto S., Kanaho Y., Sumimoto H., Ikegami T., Sabe H. 2004. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J. 23, 4413–4422.

  23. Chen Z., Chang K., Capraro B.R., Zhu C., Hsu C.J., Baumgart T. 2014. Intradimer/intermolecular interactions suggest autoinhibition mechanism in endophilin A1. J. Am. Chem. Soc. 136, 4557–4564.

  24. Rizzoli S.O., Betz W.J. 2005. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69.

  25. Roos J., Kelly R.B. 1999. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr. Biol. 9, 1411–1414.

  26. Maycox P.R., Link E., Reetz A., Morris S.A., Jahn R. 1992. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J. Cell. Biol. 118, 1379–1388.

  27. Granseth B., Odermatt B., Royle S.J., Lagnado L. 2006. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron. 51, 773–786.

  28. Watanabe S., Liu Q., Davis M.W., Hollopeter G., Thomas N., Jorgensen N.B., Jorgensen E.M. 2013. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. Elife. 2, e00723.

  29. Watanabe S., Rost B.R., Camacho-Perez M., Davis M.W., Sohl-Kielczynski B., Rosenmund C., Jorgensen E.M. 2013. Ultrafast endocytosis at mouse hippocampal synapses. Nature. 504, 242–247.

  30. Watanabe S., Mamer L.E., Raychaudhuri S., Luvsanjav D., Eisen J., Trimbuch T., Sohl-Kielczynski B., Fenske P., Milosevic I., Rosenmund C., Jorgensen E.M. 2018. Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron. 98, 1184–1197.e6.

  31. Shin W., Wei L., Arpino G., Ge L., Guo X., Chan C.Y., Hamid E., Shupliakov O., Bleck C.K.E., Wu L.G. 2021. Preformed omega-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron. 109, 3119– 3134.

  32. Wu W., Wu L. G. 2007. Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc. Natl. Acad. Sci. USA. 104, 10 234–10 239.

  33. Cousin M.A., Nicholls D.G. 1997. Synaptic vesicle recycling in cultured cerebellar granule cells: Role of vesicular acidification and refilling. J. Neurochem. 69, 1927–1935.

  34. Cousin M.A., Robinson P.J. 1999. Mechanisms of synaptic vesicle recycling illuminated by fluorescent dyes. J. Neurochem. 73, 2227–2239.

  35. Rizzoli S. O. 2014. Synaptic vesicle recycling: Steps and principles. EMBO J. 33, 788–822.

  36. Banani S.F., Lee H.O., Hyman A.A., Rosen M.K. 2017. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell. Biol. 18, 285–298.

  37. Shin Y., Brangwynne C.P. 2017. Liquid phase condensation in cell physiology and disease. Science. 357

  38. McDonald N.A., Fetter R.D., Shen K. 2020. Assembly of synaptic active zones requires phase separation of scaffold molecules. Nature. 588, 454–458.

  39. Milovanovic D., Wu Y., Bian X., De Camilli P. 2018. A liquid phase of synapsin and lipid vesicles. Science. 361, 604–607.

  40. Pechstein A., Tomilin N., Fredrich K., Vorontsova O., Sopova E., Evergren E., Haucke V., Brodin L., Shupliakov O. 2020. Vesicle clustering in a living synapse depends on a synapsin region that mediates phase separation. Cell Rep. 30, 2594–2602.e3.

  41. Wang S.S.H., Held R.G., Wong M.Y., Liu C., Karakhanyan A., Kaeser P.S. 2016. Fusion Competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking. Neuron. 91, 777–791.

  42. Wu X., Cai Q., Shen Z., Chen X., Zeng M., Du S., Zhang M. 2019. RIM and RIM–BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell. 73, 971–984.e5.

  43. Emperador-Melero J., Wong M.Y., Wang S.S.H., de Nola G., Nyitrai H., Kirchhausen T., Kaeser P.S. 2021. PKC-phosphorylation of Liprin-alpha3 triggers phase separation and controls presynaptic active zone structure. Nat. Commun. 12, 3057.

  44. Liang M., Jin G., Xie X., Zhang W., Li K., Niu F., Yu C., Wei Z. 2021. Oligomerized liprin-alpha promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins. Cell Rep. 34, 108901.

  45. Day K.J., Kago G., Wang L., Richter J.B., Hayden C.C., Lafer E.M., Stachowiak J.C. 2021. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat. Cell. Biol. 23, 366–376.

  46. Imoto Y., Raychaudhuri S., Ma Y., Fenske P., Sandoval E., Itoh K., Blumrich E.M., Matsubayashi H.T., Mamer L., Zarebidaki F., Sohl-Kielczynski B., Trimbuch T., Nayak S., Iwasa J.H., Liu J., Wu B., Ha T., Inoue T., Jorgensen E.M., Cousin M.A., Rosenmund C., Watanabe S. 2022. Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron. 110, 2815–2835.e13.

  47. Wu X., Ganzella M., Zhou J., Zhu S., Jahn R., Zhang M. 2021. Vesicle tethering on the surface of phase-separated active zone condensates. Mol. Cell. 81, 13–24.e7.

  48. Alberti S. 2017. Phase separation in biology. Curr. Biol. 27, R1097–R1102.

  49. Krabben L., Fassio A., Bhatia V.K., Pechstein A., Onofri F., Fadda M., Messa M., Rao Y., Shupliakov O., Stamou D., Benfenati F., Haucke V. 2011. Synapsin I senses membrane curvature by an amphipathic lipid packing sensor motif. J. Neurosci. 31, 18149–18154.

  50. Park D., Wu Y., Lee S.E., Kim G., Jeong S., Milovanovic D., De Camilli P., Chang S. 2021. Cooperative function of synaptophysin and synapsin in the generation of synaptic vesicle-like clusters in non-neuronal cells. Nat. Commun. 12, 263.

  51. Boeynaems S., Alberti S., Fawzi N.L., Mittag T., Polymenidou M., Rousseau F., Schymkowitz J., Shorter J., Wolozin B., Van Den Bosch L., Tompa P., Fuxreiter M. 2018. Protein phase separation: A new phase in cell biology. Trends Cell. Biol. 28, 420–435.

  52. Ghosh A., Mazarakos K., Zhou H.X. 2019. Three archetypical classes of macromolecular regulators of protein liquid-liquid phase separation. Proc. Natl. Acad. Sci. USA. 116, 19474–19483.

  53. Saheki Y., De Camilli P. 2012. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 4, a005645.

  54. Chanaday N.L., Cousin M.A., Milosevic I., Watanabe S., Morgan J.R. 2019. The synaptic vesicle cycle revisited: New insights into the modes and mechanisms. J. Neurosci. 39, 8209–8216.

  55. Di Paolo G., Sankaranarayanan S., Wenk M.R., Daniell L., Perucco E., Caldarone B.J., Flavell R., Picciotto M.R., Ryan T.A., Cremona O., De Camilli P. 2002. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron. 33, 789–804.

  56. Slepnev V.I., Ochoa G.C., Butler M.H., De Camilli P. 2000. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1 and disruption of clathrin coat function by amphiphysin fragments comprising these sites. J. Biol. Chem. 275, 17583–17589.

  57. Cowling B.S., Prokic I., Tasfaout H., Rabai A., Humbert F., Rinaldi B., Nicot A. S., Kretz C., Friant S., Roux A., Laporte J. 2017. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J. Clin. Invest. 127, 4477–4487.

  58. Prokic I., Cowling B.S., Laporte J. 2014. Amphiphysin 2 (BIN1) in physiology and diseases. J. Mol. Med. (Berl.). 92, 453–463.

  59. Evergren E., Marcucci M., Tomilin N., Low P., Slepnev V., Andersson F., Gad H., Brodin L., De Camilli P., Shupliakov O. 2004. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic. 5, 514–528.

  60. Arkhipov A., Yin Y., Schulten K. 2009. Membrane-bending mechanism of amphiphysin N-BAR domains. Biophys. J. 97, 2727–2735.

  61. Loll P.J., Swain E., Chen Y., Turner B.T., Zhang J.F. 2008. Structure of the SH3 domain of rat endophilin A2. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 64, 243–246.

  62. Wigge P., McMahon H.T. 1998. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339–344.

  63. Farsad K., Slepnev V., Ochoa G., Daniell L., Haucke V., De Camilli P. 2003. A putative role for intramolecular regulatory mechanisms in the adaptor function of amphiphysin in endocytosis. Neuropharmacology. 45, 787–796.

  64. Tomizawa K., Sunada S., Lu Y.F., Oda Y., Kinuta M., Ohshima T., Saito T., Wei F. Y., Matsushita M., Li S.T., Tsutsui K., Hisanaga S., Mikoshiba K., Takei K., Matsui H. 2003. Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J. Cell. Biol. 163, 813–824.

  65. Micheva K.D., Ramjaun A.R., Kay B.K., McPherson P.S. 1997. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 414, 308–312.

  66. Bauerfeind R., Takei K., De Camilli P. 1997. Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 272, 30984–30992.

  67. Giachino C., Lantelme E., Lanzetti L., Saccone S., Bella Valle G., Migone N. 1997. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics. 41, 427–434.

  68. So C.W., Sham M.H., Chew S.L., Cheung N., So C.K., Chung S.K., Caldas C., Wiedemann L.M., Chan L.C. 2000. Expression and protein-binding studies of the EEN gene family, new interacting partners for dynamin, synaptojanin and huntingtin proteins. Biochem. J. 348, Pt 2, 447–458.

  69. Kjaerulff O., Brodin L., Jung A. 2011. The structure and function of endophilin proteins. Cell Biochem. Biophys. 60, 137–154.

  70. Pierrat B., Simonen M., Cueto M., Mestan J., Ferrigno P., Heim J. 2001. SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics. 71, 222–234.

  71. Soukup S.F., Verstreken P. 2017. EndoA/endophilin-A creates docking stations for autophagic proteins at synapses. Autophagy. 13, 971–972.

  72. Hernandez-Diaz S., Ghimire S., Sanchez-Mirasierra I., Montecinos-Oliva C., Swerts J., Kuenen S., Verstreken P., Soukup S.F. 2022. Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol. Dis. 163, 105595.

  73. Ambroso M.R., Hegde B.G., Langen R. 2014. Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA. 111, 6982–6987.

  74. Matta S., Van Kolen K., da Cunha R., van den Bogaart G., Mandemakers W., Miskiewicz K., De Bock P.J., Morais V.A., Vilain S., Haddad D., Delbroek L., Swerts J., Chavez-Gutierrez L., Esposito G., Daneels G., Karran E., Holt M., Gevaert K., Moechars D.W., De Strooper B., Verstreken P. 2012. LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron. 75, 1008–1021.

  75. Vazquez F.X., Unger V.M., Voth G.A. 2013. Autoinhibition of endophilin in solution via interdomain interactions. Biophys. J. 104, 396–403.

  76. Billuart P., Bienvenu T., Ronce N., des Portes V., Vinet M.C., Zemni R., Roest Crollius H., Carrie A., Fauchereau F., Cherry M., Briault S., Hamel B., Fryns J.P., Beldjord C., Kahn A., Moraine C., Chelly J. 1998. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 392, 923–926.

  77. Khelfaoui M., Pavlowsky A., Powell A.D., Valnegri P., Cheong K.W., Blandin Y., Passafaro M., Jefferys J.G., Chelly J., Billuart P. 2009. Inhibition of RhoA pathway rescues the endocytosis defects in Oligophrenin1 mouse model of mental retardation. Hum. Mol. Genet. 18, 2575–2583.

  78. Nakano-Kobayashi A., Kasri N.N., Newey S.E., Van Aelst L. 2009. The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1. Curr. Biol. 19, 1133–1139.

  79. Govek E.E., Newey S.E., Akerman C.J., Cross J.R., Van der Veken L., Van Aelst L. 2004. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat. Neurosci. 7, 364–372.

  80. Kessels M.M., Qualmann B. 2004. The syndapin protein family: Linking membrane trafficking with the cytoskeleton. J. Cell. Sci. 117, 3077–3086.

  81. Wang Q., Navarro M.V., Peng G., Molinelli E., Goh S.L., Judson B.L., Rajashankar K.R., Sondermann H. 2009. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc. Natl. Acad. Sci. USA. 106, 12700–12705.

  82. Rao Y., Ma Q., Vahedi-Faridi A., Sundborger A., Pechstein A., Puchkov D., Luo L., Shupliakov O., Saenger W., Haucke V. 2010. Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc. Natl. Acad. Sci. USA. 107, 8213–8218.

  83. Quan A., Robinson P.J. 2013. Syndapin–a membrane remodelling and endocytic F-BAR protein. FEBS J. 280, 5198–5212.

  84. Katoh M., Katoh M. 2004. Identification and characterization of human FCHO2 and mouse Fcho2 genes in silico. Int. J. Mol. Med. 14, 327–331.

  85. Uhlen M., Fagerberg L., Hallstrom B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjostedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C. A., Odeberg J., Djureinovic D., Takanen J.O., Hober S., Alm T., Edqvist P.H., Berling H., Tegel H., Mulder J., Rockberg J., Nilsson P., Schwenk J.M., Hamsten M., von Feilitzen K., Forsberg M., Persson L., Johansson F., Zwahlen M., von Heijne G., Nielsen J., Ponten F. 2015. Proteomics. Tissue-based map of the human proteome. Science. 347, 1260419. https://doi.org/10.1126/science.1260419

  86. Almeida-Souza L., Frank R.A. W., Garcia-Nafria J., Colussi A., Gunawardana N., Johnson C.M., Yu M., Howard G., Andrews B., Vallis Y., McMahon H.T. 2018. A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell. 174, 325–337.e14.

  87. Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., Asplund A., Sjostedt E., Lundberg E., Szigyarto C.A., Skogs M., Takanen J.O., Berling H., Tegel H., Mulder J., Nilsson P., Schwenk J.M., Lindskog C., Danielsson F., Mardinoglu A., Sivertsson A., von Feilitzen K., Forsberg M., Zwahlen M., Olsson I., Navani S., Huss M., Nielsen J., Ponten F., Uhlen M. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics. 13, 397–406.

  88. Reider A., Barker S.L., Mishra S.K., Im Y.J., Maldonado-Baez L., Hurley J.H., Traub L. M., Wendland B. 2009. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116.

  89. Henne W.M., Kent H.M., Ford M.G., Hegde B.G., Daumke O., Butler P.J., Mittal R., Langen R., Evans P.R., McMahon H. T. 2007. Structure and analysis of FCHo2 F-BAR domain: A dimerizing and membrane recruitment module that effects membrane curvature. Structure. 15, 839–852.

  90. Brodin L., Milovanovic D., Rizzoli S.O., Shupliakov O. 2022. alpha-Synuclein in the synaptic vesicle liquid phase: Active player or passive bystander? Front. Mol. Biosci. 9, 891508.

  91. Shupliakov O. 2009. The synaptic vesicle cluster: A source of endocytic proteins during neurotransmitter release. Neuroscience. 158, 204–210.

  92. Bai J., Hu Z., Dittman J.S., Pym E.C., Kaplan J.M. 2010. Endophilin functions as a membrane-bending molecule and is delivered to endocytic zones by exocytosis. Cell. 143, 430–441.

  93. Denker A., Krohnert K., Buckers J., Neher E., Rizzoli S.O. 2011. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA. 108, 17 183–17 188.

  94. Andersson F., Jakobsson J., Low P., Shupliakov O., Brodin L. 2008. Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J. Neurosci. 28, 3925–3933.

  95. Haffner C., Takei K., Chen H., Ringstad N., Hudson A., Butler M.H., Salcini A.E., Di Fiore P.P., De Camilli P. 1997. Synaptojanin 1: Localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett. 419, 175–180.

  96. Evergren E., Gad H., Walther K., Sundborger A., Tomilin N., Shupliakov O. 2007. Intersectin is a negative regulator of dynamin recruitment to the synaptic endocytic zone in the central synapse. J. Neurosci. 27, 379–390.

  97. De Gois S., Jeanclos E., Morris M., Grewal S., Varoqui H., Erickson J.D. 2006. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: Implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell Mol. Neurobiol. 26, 679–693.

  98. Willet A.H., Igarashi M.G., Chen J.S., Bhattacharjee R., Ren L., Cullati S.N., Elmore Z.C., Roberts-Galbraith R.H., Johnson A.E., Beckley J.R., Gould K.L. 2021. Phosphorylation in the intrinsically disordered region of F-BAR protein Imp2 regulates its contractile ring recruitment. J. Cell. Sci. 134 (16), jcs258645.

  99. Su M., Zhuang Y., Miao X., Zeng Y., Gao W., Zhao W., Wu M. 2020. Comparative study of curvature sensing mediated by F-BAR and an intrinsically disordered region of FBP17. iScience. 23, 101712.

  100. Mangione M.C., Snider C.E., Gould K.L. 2019. The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity. Mol. Biol. Cell. 30, 2790–2801.

  101. Winther A.M., Vorontsova O., Rees K.A., Nareoja T., Sopova E., Jiao W., Shupliakov O. 2015. An endocytic scaffolding protein together with synapsin regulates synaptic vesicle clustering in the drosophila neuromuscular junction. J. Neurosci. 35, 14756–14770.

  102. Evergren E., Benfenati F., Shupliakov O. 2007. The synapsin cycle: A view from the synaptic endocytic zone. J. Neurosci. Res. 85, 2648–2656.

  103. Weston M.C., Nehring R.B., Wojcik S.M., Rosenmund C. 2011. Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron. 69, 1147–1159.

  104. Pechstein A., Gerth F., Milosevic I., Japel M., Eichhorn-Grunig M., Vorontsova O., Bacetic J., Maritzen T., Shupliakov O., Freund C., Haucke V. 2015. Vesicle uncoating regulated by SH3-SH3 domain-mediated complex formation between endophilin and intersectin at synapses. EMBO Rep. 16, 232–239.

  105. Gowrisankaran S., Houy S., Del Castillo J.G.P., Steubler V., Gelker M., Kroll J., Pinheiro P.S., Schwitters D., Halbsgut N., Pechstein A., van Weering J.R.T., Maritzen T., Haucke V., Raimundo N., Sorensen J.B., Milosevic I. 2020. Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nat. Commun. 11, 1266.

  106. Somasundaram A., Taraska J.W. 2018. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol. Biol. Cell. 29, 1891–1903.

  107. Khelfaoui M., Denis C., van Galen E., de Bock F., Schmitt A., Houbron C., Morice E., Giros B., Ramakers G., Fagni L., Chelly J., Nosten-Bertrand M., Billuart P. 2007. Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J. Neurosci. 27, 9439–9450.

  108. Houy S., Estay-Ahumada C., Croise P., Calco V., Haeberle A.M., Bailly Y., Billuart P., Vitale N., Bader M.F., Ory S., Gasman S. 2015. Oligophrenin-1 connects exocytotic fusion to compensatory endocytosis in neuroendocrine cells. J. Neurosci. 35, 11 045–11 055.

  109. Del Signore S.J., Kelley C.F., Messelaar E.M., Lemos T., Marchan M.F., Ermanoska B., Mund M., Fai T.G., Kaksonen M., Rodal A.A. 2021. An autoinhibitory clamp of actin assembly constrains and directs synaptic endocytosis. Elife. 10, e69597.

  110. Henne W.M., Boucrot E., Meinecke M., Evergren E., Vallis Y., Mittal R., McMahon H.T. 2010. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science. 328, 1281–1284.

  111. El Alaoui F., Casuso I., Sanchez-Fuentes D., Arpin-Andre C., Rathar R., Baecker V., Castro A., Lorca T., Viaud J., Vassilopoulos S., Carretero-Genevrier A., Picas L. 2022. Structural organization and dynamics of FCHo2 docking on membranes. Elife. 11, e73156.

  112. Zaccai N.R., Kadlecova Z., Dickson V.K., Korobchevskaya K., Kamenicky J., Kovtun O., Umasankar P.K., Wrobel A.G., Kaufman J.G.G., Gray S.R., Qu K., Evans P.R., Fritzsche M., Sroubek F., Honing S., Briggs J.A.G., Kelly B.T., Owen D.J., Traub L.M. 2022. FCHO controls AP2’s initiating role in endocytosis through a PtdIns(4,5)P2-dependent switch. Sci. Adv. 8, eabn2018.

  113. Sundborger A., Soderblom C., Vorontsova O., Evergren E., Hinshaw J.E., Shupliakov O. 2011. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell. Sci. 124, 133–143.

  114. Ringstad N., Gad H., Low P., Di Paolo G., Brodin L., Shupliakov O., De Camilli P. 1999. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron. 24, 143–154.

  115. Gad H., Ringstad N., Low P., Kjaerulff O., Gustafsson J., Wenk M., Di Paolo G., Nemoto Y., Crun J., Ellisman M.H., De Camilli P., Shupliakov O., Brodin L. 2000. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron. 27, 301–312.

  116. Milosevic I., Giovedi S., Lou X., Raimondi A., Collesi C., Shen H., Paradise S., O’Toole E., Ferguson S., Cremona O., De Camilli P. 2011. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 72, 587–601.

  117. Antonny B., Burd C., De Camilli P., Chen E., Daumke O., Faelber K., Ford M., Frolov V.A., Frost A., Hinshaw J.E., Kirchhausen T., Kozlov M.M., Lenz M., Low H.H., McMahon H., Merrifield C., Pollard T.D., Robinson P.J., Roux A., Schmid S. 2016. Membrane fission by dynamin: What we know and what we need to know. EMBO J. 35, 2270–2284.

  118. Cao M., Wu Y., Ashrafi G., McCartney A.J., Wheeler H., Bushong E.A., Boassa D., Ellisman M.H., Ryan T.A., De Camilli P. 2017. Parkinson sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron. 93, 882–896.e5.

  119. Massol R.H., Boll W., Griffin A.M., Kirchhausen T. 2006. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl. Acad. Sci. USA. 103, 10265–10270.

  120. Shupliakov O., Akkuratova N., Korenkova O., Onochin K., Sopova E., Winther Å.M.E. 2020. Targeting of an F-BAR domain protein to the synaptic periactive zone ensures a uniform size of synaptic vesicles. Eur. Neuropsychopharm. . 40, 440–441.

  121. Boucrot E., Ferreira A.P., Almeida-Souza L., Debard S., Vallis Y., Howard G., Bertot L., Sauvonnet N., McMahon H.T. 2015. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 517, 460–465.

  122. Renard H.F., Simunovic M., Lemiere J., Boucrot E., Garcia-Castillo M.D., Arumugam S., Chambon V., Lamaze C., Wunder C., Kenworthy A.K., Schmidt A.A., McMahon H.T., Sykes C., Bassereau P., Johannes L. 2015. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature. 517, 493–496.

  123. Ferreira A.P.A., Casamento A., Roas S.C., Panambalana J., Subramaniam S., Schützenhofer K., Halff E.F., Wah Hak L.C., McGourty K., Kittler J.T., Thalassinos K., Martinvalet D., Boucrot E. 2021. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat. Commun. 12, 2424.

  124. Casamento A., Boucrot E. 2020. Molecular mechanism of fast endophilin-mediated endocytosis. Biochem. J. 477, 2327–2345.

  125. Clayton E.L., Anggono V., Smillie K.J., Chau N., Robinson P.J., Cousin M.A. 2009. The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J. Neurosci. 29, 7706–7717.

  126. Cheung G., Cousin M.A. 2019. Synaptic vesicle generation from activity-dependent bulk endosomes requires a dephosphorylation-dependent dynamin-syndapin interaction. J. Neurochem. 151, 570–583.

  127. Modregger J., Schmidt A.A., Ritter B., Huttner W.B., Plomann M. 2003. Characterization of endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. J. Biol. Chem. 278, 4160–4167.

  128. Qualmann B., Roos J., DiGregorio P.J., Kelly R.B. 1999. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell. 10, 501–513.

  129. Onofri F., Giovedi S., Kao H.T., Valtorta F., Bongiorno Borbone L., De Camilli P., Greengard P., Benfenati F. 2000. Specificity of the binding of synapsin I to Src homology 3 domains. J. Biol. Chem. 275, 29857–29867.

  130. Schneider K., Seemann E., Liebmann L., Ahuja R., Koch D., Westermann M., Hubner C.A., Kessels M.M., Qualmann B. 2014. ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function. J. Cell. Biol. 205, 197–215.

  131. Gerth F., Japel M., Pechstein A., Kochlamazashvili G., Lehmann M., Puchkov D., Onofri F., Benfenati F., Nikonenko A. G., Fredrich K., Shupliakov O., Maritzen T., Freund C., Haucke V. 2017. Intersectin associates with synapsin and regulates its nanoscale localization and function. Proc. Natl. Acad. Sci. USA. 114, 12 057–12 062.

  132. Takahashi Y., Meyerkord C.L., Wang H.G. 2009. Bif-1/endophilin B1: A candidate for crescent driving force in autophagy. Cell Death Differ. 16, 947–955.

  133. Karbowski M., Jeong S.Y., Youle R.J. 2004. Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell. Biol. 166, 1027–1039.

  134. Yang Y., Chen J., Guo Z., Deng S., Du X., Zhu S., Ye C., Shi Y.S., Liu J.J. 2018. Endophilin A1 promotes actin polymerization in dendritic spines required for synaptic potentiation. Front. Mol. Neurosci. 11, 177.

  135. Meunier B., Quaranta M., Daviet L., Hatzoglou A., Leprince C. 2009. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170). Eur. J. Cell. Biol. 88, 91–102.

  136. Chapuis J., Hansmannel F., Gistelinck M., Mounier A., Van Cauwenberghe C., Kolen K. V., Geller F., Sottejeau Y., Harold D., Dourlen P., Grenier-Boley B., Kamatani Y., Delepine B., Demiautte F., Zelenika D., Zommer N., Hamdane M., Bellenguez C., Dartigues J.F., Hauw J.J., Letronne F., Ayral A.M., Sleegers K., Schellens A., Broeck L.V., Engelborghs S., De Deyn P.P., Vandenberghe R., O’Donovan M., Owen M., Epelbaum J., Mercken M., Karran E., Bantscheff M., Drewes G., Joberty G., Campion D., Octave J.N., Berr C., Lathrop M., Callaerts P., Mann D., Williams J., Buee L., Dewachter I., Van Broeckhoven C., Amouyel P., Moechars D., Dermaut B., Lambert J.C., GERAD consortium. 2013. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry. 18, 1225–1234.

  137. Noda N.N., Wang Z., Zhang H. 2020. Liquid-liquid phase separation in autophagy. J. Cell. Biol. 219, e202004062.

  138. Fujioka Y., Alam J.M., Noshiro D., Mouri K., Ando T., Okada Y., May A.I., Knorr R.L., Suzuki K., Ohsumi Y., Noda N.N. 2020. Phase separation organizes the site of autophagosome formation. Nature. 578, 301–305.

  139. La Cunza N., Tan L.X., Thamban T., Germer C.J., Rathnasamy G., Toops K.A., Lakkaraju A. 2021. Mitochondria-dependent phase separation of disease-relevant proteins drives pathological features of age-related macular degeneration. JCI Insight. 6, e142254.

Дополнительные материалы отсутствуют.

Инструменты

Биологические мембраны: Журнал мембранной и клеточной биологии