Биологические мембраны: Журнал мембранной и клеточной биологии, 2023, T. 40, № 3, стр. 172-187

Влияние акклимации растений на электронный транспорт в мембранах хлоропластов Cucumis sativus и Cucumis melo

М. А. Беньков a, И. С. Сусличенко a, Б. В. Трубицин a, А. Н. Тихонов a*

a Московский государственный университет имени М.В. Ломоносова, физический факультет
119991 Москва, Россия

* E-mail: an_tikhonov@mail.ru

Поступила в редакцию 07.11.2022
После доработки 01.12.2022
Принята к публикации 03.12.2022

Аннотация

В работе исследованы процессы электронного транспорта в листьях двух видов растений рода Cucumis, теневыносливого вида Cucumis sativus (огурец) и светолюбивого вида Cucumis melo (дыня), выращенных в условиях умеренной (50–125 мкмоль фотонов м−2 c−1) или сильной освещенности (850–1000 мкмоль фотонов м−2 c−1). В качестве показателей, характеризующих активность фотосистемы 2 (ФС2), использовали параметры быстрой и медленной индукции флуоресценции хлорофилла а. За функционированием фотосистемы 1 (ФС1) следили по изменениям сигнала электронного парамагнитного резонанса от окисленных реакционных центров ФС1, ${\text{Р}}_{{700}}^{ + }$. Выявлено существенное различие в динамике изменений фотосинтетических показателей теневыносливых (C. sativus) и светолюбивых (C. melo) видов при их акклимации к умеренной и сильной интенсивности света. У теневыносливого вида C. sativus фотосинтетические показатели, характеризующие активность ФС2, обнаруживают заметную чувствительность к усилению освещения по сравнению со светолюбивым видом C. melo, свидетельствуя об ослаблении активности ФС2 при повышении интенсивности света при акклимации растений. В ходе длительной (более 1–2 месяцев) акклимации С. sativus к свету высокой интенсивности (≥ 500 мкмоль фотонов м−2 с−1) их ФС2 теряет фотохимическую активность, чего, однако, не наблюдалось для листьев С. melo. Ослабление активности ФС2 в листьях С. sativus было обратимым – после возвращения к свету умеренной интенсивности активность ФС2 восстанавливалась до уровня, характерного для листьев С. melo. В листьях растений обоих видов проявляются различия в кинетике фотоиндуцированных редокс-превращений реакционных центров ФС1 в зависимости от условий акклимации. У растений, акклимированных к сильному свету, наблюдается четко выраженная замедленная фаза роста сигнала от ${\text{Р}}_{{700}}^{ + }$, которая предположительно может быть обусловлена циклическим электронным транспортом (ЦЭТ) вокруг ФС1. Отношение амплитуд сигналов ЭПР от ${\text{Р}}_{{700}}^{ + }$ при действии белого и дальнего красного света (707 нм) становится выше у растений, выращенных на сильном свету. Это может быть связано с увеличением ЦЭТ, способствующего оптимизации энергетического баланса и ослаблению светового стресса при избытке освещения. Полученные результаты обсуждаются в контексте задачи об оптимизации фотосинтетических процессов при акклимации растений.

Ключевые слова: растения рода Cucumis, акклимация, индукция флуоресценции хлорофилла, ЭПР

Список литературы

  1. Nelson N., Yocum C.F., 2006. Structure and function of photosystems I and II. Annu. Rev. Plant. Biol. 57, 521–565.

  2. Tikhonov A.N. 2014. The cytochrome b6  f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol. Biochem. 81, 163–183.

  3. Mamedov M., Govindjee, Nadtochenko V., Semenov A. 2015. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth. Res. 125, 51–63.

  4. Malone L.A., Proctor M.S., Hitchcock A., Hunter C.N., Johnson M.P. 2021. Cytochrome b6 f – Orchestrator of photosynthetic electron transfer. Biochim. Biophis. Acta. 1862, 148380.https://doi.org/10.1016/j.bbabio.2021.148380

  5. Höhner R., Pribil M., Herbstová M., Lopez L.S., K-unz H.-H., et al. 2020. Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc. Natl. Acad. Sci. USA. 117, 15 354–15 362.

  6. Junge W., Nelson N. 2015. ATP synthase. Annu. Rev. Biochem. 83, 631–657.

  7. Романовский Ю.М., Тихонов А.Н. 2010. Молекулярные преобразователи энергии живой клетки. Протонная АТР-синтаза – вращающийся молекулярный мотор. Успехи физических наук, 180, 931–956.

  8. Эдвардс Дж., Уокер Д. 1986. Фотосинтез С3 и С4 растений: механизмы и регуляция. М.: Мир. 598 с.

  9. Allakhverdiev S.I., Murata N. 2004. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta. 1657, 23–32.

  10. Kono M., Terashima I. 2014. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J. Photochem. Photobiol. B. 137, 89–99.

  11. Berry J., Björkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543.

  12. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. 2008. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550.

  13. Tikhonov A.N., Vershubskii A.V. 2020. Temperature‑dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Photosynth. Res. 146, 299–329.

  14. Michelet L., Zaffagnini M., Morisse S., Sparla F., Pérez-Pérez M.E., Francia F., Danon A., Marchand C.H., Fermani S., Trost P., Lemaire S.D. 2013. Redox regulation of the Calvin-Benson cycle: Something old, something new. Front. Plant Sci. 4. Article 470.https://doi.org/10.3389/fpls.2013.00470

  15. Balsera M., Schumann P., Buchanan B.B. 2016. Redox regulation in chloroplasts. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 187–207.

  16. Rumberg B., Siggel U. 1969. pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften. 56, 130–132.

  17. Kramer D.M., Sacksteder C.A., Cruz J.A. 1999. How acidic is the lumen? Photosynth. Res. 60, 151–163.

  18. Tikhonov A.N. 2013. pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth. Res. 116, 511–534.

  19. Schansker G. 2022. Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR. Photosynth. Res. 153, 191–204.

  20. Lemeille S., Rochaix J.-D. 2010. State transitions at the crossroad of thylakoid signalling pathways. Photosynth. Res. 106, 33–46.

  21. Lichtenthaler H.K., Babani F. 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Chlorophyll a Fluorescence. Springer, p. 713–736.

  22. Lichtenthaler H.K., Babani F., Navrátil M., Buschmann C. 2013. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynth. Res. 117, 355–366.

  23. Puthiyaveetil S., Kirchhoff H., Höhner R. 2016. Structural and functional dynamics of the thylakoid membrane system. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 59–87.

  24. Demmig-Adams B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39, 474–482.

  25. Samoilova O.P., Ptushenko V.V., Kuvykin I.V., Kiselev S.A., Ptushenko O.S., Tikhonov A.N. 2011. Effects of light environment on the induction of chlorophyll fluorescence in leaves: A comparative study of Tradescantia species of different ecotypes. BioSystems. 105, 41–48.

  26. Ptushenko V.V., Ptushenko E.A., Samoilova O.P., Tikhonov A.N. 2013. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: Induction events at different intensities of actinic light. BioSystems. 114, 85–97.

  27. Mishanin V.I., Trubitsin B.V., Benkov M.A., Minin A.A., Tikhonov A.N. 2016. Light acclimation of shade-tolerant and light-resistant Tradescantia species: Induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth. Res. 130, 275–291.

  28. Mishanin V.I., Trubitsin B.V., Patsaeva S.V., Ptushenko V.V., Solovchenko A.E., Tikhonov A.N. 2017. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: Chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth. Res. 133, 87–102.

  29. Benkov M.A., Yatsenko A.M., Tikhonov A.N. 2019. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. Photosynth. Res. 139, 203–214.

  30. Suslichenko I.S., Tikhonov A.N. 2019. Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett. 593, 788–798.

  31. Randall R.P. 2012. A global compendium of weeds. 2nd edn. Department of Agriculture and Food, Western Australia, 1125 p.

  32. Лютова М.И., Тихонов А.Н. 1988. Сопоставление температурной зависимости подвижности липидо-растворимой спиновой метки в тилакоидных мембранах хлоропластов дыни и огурца. Биофизика. 33, 460–464.

  33. Tikhonov A.N. 2021. Structure-function relationships in chloroplasts: EPR study of temperature-dependent regulation of photosynthesis, an overview. In: Photosynthesis: molecular approaches to solar energy conversion. Eds. Shen J.R., Satoh K., Allakhverdiev S.I. Advances in photosynthesis and respiration. 47, p. 342–373.

  34. Li Z., Wakao S., Fischer B.B., Niyogi K.K. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260.

  35. Murata N, Takahashi S., Nishiyama Y., Allakhverdiev S.I. 2007. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 1767, 414–421.

  36. Lazár D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta. 1412, 1–28.

  37. Baker N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113.

  38. Adams W.W. III, Demmig-Adams B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Chlorophyll a fuorescence: A signature of photosynthesis. Advances in photosynthesis and respiration. Eds. Papageorgiou G.C., Govindjee G. Dordrecht: Springer, p. 583–604.

  39. Kalaji H.M., Schansker G., Ladle R.J., Goltsev V., Bosa K., Allakhverdiev S.I., Brestic M., Bussotti F., Calatayud A., Dąbrowski P., Elsheery N.I., Ferroni L., Guidi L., Hogewoning S.W, Jajoo A., Misra A.N., Nebauer S.G., Pancaldi S., Penella C., Poli D., Pollastrini M., Romanowska-Duda Z.B., Rutkowska B., Serôdio J., Suresh K., Szulc W., Tambussi E., Yanniccari M., Zivcak M. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 122, 121–158.

  40. Kuvykin I.V., Ptushenko V.V., Vershoubsky A.V., Tikhonov A.N. 2011. Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2. Biochim. Biophys. Acta. 1807, 336–347.

  41. Trubitsin B.V., Vershubskii A.V., Priklonskii V.I., Tikhonov A.N. 2015. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. J. Photochem. Photobiol. B. 152, 400–415.

  42. Stirbet A. 2012. Chlorophyll a fluorescence induction: A personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 113, 15–61.

  43. Stirbet A., Govindjee G. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photoch. Photobio. B. 104, 236–257.

  44. Schansker G., Tóth S.Z., Strasser R.J. 2006. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim. Biophys. Acta. 1757, 787–797.

  45. Niyogi K.K., Truong T.B. 2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314.

  46. Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R., Jahns P. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta. 1797, 466–475.

  47. Jahns P., Holzwarth A.R. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta. 1817, 182–193.

  48. Ruban A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170, 1903–1916.

  49. Jallet D., Cantrell M., Peers G. 2016. New players for photoprotection and light acclimation. In: Chloroplasts. Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 133–159.

  50. Tikhonov A.N. 2015. Induction events and short-term regulation of electron transport in chloroplasts: An overview. Photosynth. Res. 125, 65–94.

  51. Bendall D.S., Manasse R.S. 1995. Cyclic phosphorylation and electron transport. Biochim. Biophys. Acta. 1229, 23–38.

  52. Strand D.D., Fisher N., Kramer D.M. 2016. Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 89–100

  53. Johnson G.N. 2011. Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta. 1807, 906–911.

  54. Stiehl H.H., Witt H.T. 1969. Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturforsch. 24b, 1588–1598.

  55. Haehnel W. 1984. Photosynthetic electron transport in higher plants. Annu. Rev. Plant Physiol. 35, 659–693.

  56. Bukhov N., Egorova E., Carpentier R. 2002. Electron flow to photosystem I from stromal reductants in vivo: The size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units. Planta. 215, 812–820.

  57. Suslichenko I.S., Trubitsin B.V., Vershubskii A.V., Tikho-nov A.N. 2022. The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol. Biochem. 185, 233–243.

  58. Eberhard S., Finazzi G., Wollman F.-A. 2008. The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515.

  59. Demmig-Adams B., Cohu C.M., Muller O., Adams III W.W. 2012. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosynth. Res. 113, 75–88.

  60. Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637–1661.

  61. Murchie E.H., Ruban A.V. 2020. Dynamic non-photochemical quenching in plants: From molecular mechanism to productivity. The Plant J. 101, 885–896.

  62. Johnson M.P., Wientjes E. 2020. The relevance of dynamic thylakoid organization to photosynthetic regulation. Biochim. Biophys. Acta. 1861, 148039.

  63. Ballottari M., Dall’Osto L., Morosinotto T., Bassi R. 2007. Contrasting behavior of higher plant Photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8946–8958.

  64. Kouřil, R., Wientjes, E., Bultema, J.B., Croce, R., Boekema, E. J. 2013. Highlight vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta. 1827, 411–419.

  65. Halliwell B., Gutteridge J.M.C. 2007. Free radicals in biology and medicine, fifth ed., Oxford: Oxford University, 2007.

  66. Wittkoop T.M., Saroussi S., Yang W., Grossman A.R. 2016. The GreenCut-Functions and relationships of proteins conserved in green lineage organisms. In: Chloroplasts: Current research and future trends. Ed. Kirchhoff H. Norfolk, UK: Caister Academic Press, p. 241–278.

  67. Borisova-Mubarakshina M.M., Ivanov B.N., Vetoshkina D.V., Lubimov V.Y., Fedorchuk T.P., Naydov I.A., Kozuleva M.A., Rudenko N.N., Dall’Osto L., Cazzaniga S., Bassi R. 2015. Long-term acclimatory response to excess excitation energy: Evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. J. Exp. Bot. 66, 7151–7164.

  68. Ivanov B.N., Borisova-Mubarakshina M.M., Kozuleva M.A. 2018. Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide. Funct. Plant Biol. 45, 102–110.

  69. Кулаева О.Н. 1982. Гормональная регуляция физиологических процессов у растений на уровне РНК и белка. М.: Наука, 82 с.

Дополнительные материалы отсутствуют.