Биология моря, 2022, T. 48, № 3, стр. 201-211

Ортологи генов семейства миогенных регуляторных факторов (MRF) и их возможные функции у иглокожих

В. А. Нижниченко 1*, И. Ю. Долматов 1

1 Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН
690041 Владивосток, Россия

* E-mail: 0hm@mail.ru

Поступила в редакцию 05.08.2021
После доработки 03.12.2021
Принята к публикации 27.01.2022

Аннотация

Гены семейства MRF, играющие важную роль в развитии мышечной системы, есть у всех животных. Исследование доступных транскриптомов и геномов разных представителей Echinodermata показало наличие у этих животных ортологов гена MyoD позвоночных. У морских лилий и морских ежей присутствуют три гена: MyoD1, MyoD2 и MyoD3; морские звезды, по-видимому, утратили ген MyoD3, а голотурии – MyoD2. При регенерации мышц у голотурии Eupentacta fraudatrix значительно увеличивалась экспрессия гена MyoD3, в то время как число транскриптов MyoD1 не изменялось. Это может указывать на участие MyoD3 в регуляции миогенеза у голотурий.

Ключевые слова: MRF, MyoD, мышечная система, Echinodermata, голотурии, регенерация, развитие, миогенез

Список литературы

  1. Долматов И.Ю., Машанов В.С. Регенерация у голотурий. Владивосток: Дальнаука. 2007. 212 с.

  2. Долматов И.Ю., Бобровская Н.В., Гирич А.С. Иглокожие как модельные объекты для изучения механизмов регенерации // Вестн. СПбГУ. 2014. Сер. 3. Вып. 3. С. 96–112.

  3. Adams M., Celniker S., Holt R. et al. The genome sequence of Drosophila melanogaster // Science. 2000. V. 287. P. 2185–2195.

  4. Andrikou C., Iovene E., Rizzo F. et al. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors // EvoDevo. 2013. V. 4. Art. № 33.

  5. Araki S., Saiga H., Makabe K., Satoh N. Expression of AMD 1, a gene for a MyoD 1-related factor in the ascidian Halocynthia roretzi // Roux’s Arch. Dev. Biol. 1994. V. 203. P. 320–327.

  6. Atchley W., Fitch W., Bronner-Fraser M. Molecular evolution of the MyoD family of transcription factors // Proc. Nat. Acad. Sci. U.S.A. 1994. V. 91. P. 11522–11526.

  7. Balagopalan L., Keller C., Abmayr S. Loss-of-function mutations reveal that the Drosophila nautilus gene is not essential for embryonic myogenesis or viability // Dev. Biol. 2001. V. 231. P. 374–382.

  8. Baugh L., Hunter C. MyoD, modularity, and myogenesis: conservation of regulators and redundancy in C. elegans // Genes Dev. 2006. V. 20. P. 3342–3346.

  9. Bergstrom D., Tapscott S. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family // Mol. Cell. Biol. 2001. V. 21. № 7. P. 2404–2412.

  10. Boyko A., Girich A., Tkacheva E., Dolmatov I. The Eupentacta fraudatrix transcriptome provides insights into regulation of cell transdifferentiation // Sci. Rep. 2020. V. 10. Art. № 1522.

  11. Buckingham M., Rigby P. Gene regulatory networks and transcriptional mechanisms that control myogenesis // Dev. Cell. 2014. V. 28 P. 225–238.

  12. Candia Carnevali M.D. Regeneration in Echinoderms: repair, regrowth, cloning // Invertebr. Surviv. J. 2006. V. 3. P. 64–76.

  13. Conerly M., Yao Z., Zhong J. et al. Distinct activities of Myf5 and MyoD indicate separate roles in skeletal muscle lineage specification and differentiation // Dev. Cell. 2016. V. 36. P. 375–385.

  14. Dehal P., Satou Y., Campbell R. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins // Science. 2003. V. 298. P. 2157–2167.

  15. Dolmatov I. Development and evolution of the muscle system in the Echinodermata // Echinoderms: Durham – Proceedings of the 12th International Echinoderm Conference. 2010. P. 163–166.

  16. Dolmatov I., Afanasyev S., Boyko A. Molecular mechanisms of fission in echinoderms: transcriptome analysis // PLoS One. 2018.V. 13. Art. ID e0195836.

  17. Dolmatov I., Eliseikina M., Bulgakov T. et al. Muscle rege-neration in the holothurian Stichopus japonicus // Roux’s Arch. Dev. Biol. 1996. V. 205. P. 486–493.

  18. Dolmatov I., Ginanova T. Muscle regeneration in holothurians // Microsc. Res. 2001. V. 55. P. 452–463.

  19. Dolmatov I., Ivantey V. Histogenesis of longitudinal muscle bands in holothurians // RJDB. 1993. V. 24. P. 67–72.

  20. Fukushige T., Brodigan T., Schriefer L. et al. Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development // Genes Dev. 2007. V. 20. P. 3395–3406.

  21. García-Arrarás J., Dolmatov I. Echinoderms: potential model systems for studies on muscle regeneration // Curr. Pharm. Des. 2010. V. 16. P. 942–955.

  22. García-Arrarás J., Estrada-Rodgers L., Santiago R. et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata) // J. Exp. Zool. 1998. V. 281 P. 288–304.

  23. Ginanova T. DNA synthesis during muscle regeneration in sea cucumber // Biol. Bull. 1998. V. 25. P. 9–13.

  24. Grounds M., Garrett K., Lai M. et al. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes // Cell Tissue Res. 1992. V. 267. P. 99–104.

  25. Guindon S., Dufayard J., Lefort V. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 // Syst. Biol. 2010. V. 59. P. 307–321.

  26. Howard-Ashby M., Materna S., Brown C. et al. Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus // Dev. Biol. 2006. V. 300. P. 90–107.

  27. Ishibashi J., Perry R., Asakura A., Rudnicki M. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions // J. Cell Biol. 2005. V. 171. P. 471–482.

  28. Karalaki M., Fili S., Philippou A., Kontsilieris M. Muscle regeneration: cellular and molecular events // In Vivo. 2009. V. 23. P. 779–796.

  29. Lanfear R., Frandsen P., Wright A. et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses // Mol. Biol. Evol. 2016. V. 34. № 3. P. 772–773.

  30. Lassar A., Davis R., Wright W. et al. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo // Cell. 1991. V. 66. P. 305–315.

  31. Mashanov V., Dolmatov I., Heinzeller T. Transdifferentiation in holothurian gut regeneration // Biol. Bull. 2005. V. 209. № 3. P. 184–193.

  32. Mashanov V., Zueva O., Heinzeller T. Regeneration of the radial nerve cord in a holothurian: a promising new model system for studying post-traumatic recovery in the adult nervous system // Tissue Cell. 2008. V. 40. P. 351–372.

  33. Michelson A., Abmayr S., Bate M. et al. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos // Genes Dev. 1990. V. 4. P. 2086–2097.

  34. Mladenov P., Igdoura S., Asotra S. et al. Purification and partial characterization of an autotomy-promoting factor from the sea star Pycnopodia helianthoides // Biol. Bull. 1989. V. 176. P. 169–175.

  35. Pavlath G., Dominov J., Kegley K. et al. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4 // Am. J. Pathol. 2003. V. 162. P. 1685–1691.

  36. Ronquist F., Teslenko M., van der Mark P. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. 2012. V. 61. P. 539–542.

  37. Rudnicki M., Braun T., Hinuma S., Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development // Cell. 1992. V. 71. P. 383–390.

  38. Rudnicki M., Schnegelsberg P., Stead R. et al. MyoD or Myf-5 is required for the formation of skeletal muscle // Cell. 1993. V. 75. P. 1351–1359.

  39. Singh K., Dilworth F. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors // FEBS J. 2013. V. 280. P. 3991–4003.

  40. Van Doren M., Ellis H., Posakony J. The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless achaete-scute protein complexes // Development. 1991. V. 113. P. 245–255.

  41. Van Doren M., Powell P., Pasternak D. et al. Spatial regulation of proneural gene activity: auto- and cross-activation of achaete is antagonized by extramacrochaetae // Genes Dev. 1992. V. 6. P. 2592–2605.

  42. Venuti J., Goldberg L., Chakraborty T. et al. A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells // Proc. Natl. Acad. Sci. U.S.A. 1991. V. 88. P. 6219–6223.

  43. Weintraub H., Dwarki V., Verma I. et al. Muscle-specific transcriptional activation by MyoD // Genes Dev. 1991. V. 5. P. 1377–1386.

  44. White J., Scaffidi A., Davies M. et al. Myotube formation is delayed but not prevented in myoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice // J. Histochem. Cytochem. 2016. V. 48. № 11. P. 1531–1544.

  45. Zhou Z., Bornemann A. MRF4 protein expression in rege-nerating rat muscle // J. Muscle Res. Cell Motil. 2001. V. 22. P. 311–316.

Дополнительные материалы отсутствуют.