Ботанический журнал, 2023, T. 108, № 7, стр. 690-708

Significance of coordination between stem xylem traits and leaf gas exchange parameters during adaptation formation in some boreal species of Karelia

V. B. Pridacha 1*, T. V. Tarelkina 1, Ya. A. Neronova 1, N. V. Tumanik 1

1 Forest Research Institute, Karelian Research Centre of RAS
185910 Petrozavodsk, Pushkinskaya Str., 11, Russia

* E-mail: pridacha@krc.karelia.ru

Поступила в редакцию 02.03.2023
После доработки 30.05.2023
Принята к публикации 06.06.2023

Аннотация

Assessment of the resistance of forest communities and individual species to external impacts requires research on the possible response of species, communities and ecosystems in different regions to the changes expected in the natural environment and climate. This study aimed to assess the variability of stem xylem anatomical and hydraulic traits and their coordination with leaf СО22О exchange parameters in evergreen gymnosperm and deciduous angiosperm tree species during natural reforestation after clear-cutting of boreal pine forest in the European North. We analysed the effects of plant growth conditions and climatic factors on the structural and functional traits of regrowing trees in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth) and aspen (Populus tremula L.) during four growing seasons in a clear-cut site and under bilberry-type pine forest canopy in the middle taiga of Karelia. Stem xylem anatomical and hydraulic traits and leaf СО22О exchange parameters in the different tree species mainly demonstrated a similar response to changes in plant growth conditions and climate. In the clear-cut, both Scots pine and the angiosperm tree species had the highest tracheid and vessel hydraulic diameters and xylem potential hydraulic conductivity while at the same time having the lowest specific density of tracheids and vessels. Analyzing the interannual variation of climatic factors we found that the variability of annual increments was the highest in all the species as compared to the other xylem traits, which were more conservative. Coordination between stem xylem hydraulic traits and stomatal conductance, rates of photosynthesis and transpiration, and their variability in evergreen gymnosperm and deciduous angiosperm tree species under environmental factors indicate different hydraulic behavior (isohydric/anisohydric) strategies in silver birch, aspen, and Scots pine. The predicted increase in the frequency of heat waves and droughts at Northern latitudes will promote the competitive ability of Scots pine and aspen, which build a more efficient and safer hydraulic structure compared to silver birch by raising СО2 gas exchange and productivity in dry conditions.

Keywords: woody plants, hydraulic conductivity, photosynthesis, transpiration, environmental factors

Список литературы

  1. Anderegg W.R.L. 2015. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. – New Phytol. 205: 1008–1014. https://doi.org/10.1111/nph.12907

  2. Anderegg W.R.L., Anderegg L.D.L., Kerr K.L., Trugman A.T. 2019. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. – Glob. Change Biol. 25: 3793–3802. https://doi.org/10.1111/gcb.14771

  3. Antonova G.F., Stasova V.V. 1997. Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. – Trees. 11 (8): 462–468.

  4. Arzac A., Babushkina E.A., Fonti P., Slobodchikova V., Sviderskaya I.V., Vaganov E.A. 2018. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. – Dendrochronologia. 49: 1–8. https://doi.org/10.1016/j.dendro.2018.02.007

  5. Babushkina E.A., Belokopytova L.V., Zhirnova D.F., Vaganov E.A. 2019. Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation. – Dendrochronologia. 53: 114–124. https://doi.org/10.1016/j.dendro.2018.12.003

  6. Benson M.C., Miniat C.F., Oishi A., Denham S.O., Domec J.C., Johnson D.M., Missik J.E., Phillips R.P., Wood J.D., Novick K.A. 2022. The xylem of Anisohydric Quercus alba L. is more vulnerable to embolism than isohydric codominants. – Plant Cell Environ. 45: 329– 346. https://doi.org/10.1111/pce.14244

  7. Bonan G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. – Science 320: 1444–1449. https://doi.org/10.1126/science.1155121

  8. Bouche P.S., Larter M., Domec J.C., Burlett R., Gasson P., Jansen S., Delzon S. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. – J. Exp. Bot. 65: 4419–4431. https://doi.org/10.1093/jxb/eru218

  9. Brodribb T.J., Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. – Plant Physiol. 149: 575–584. https://doi.org/10.1104/pp.108.129783

  10. Brodribb T.J., McAdam S.A.M., Carins Murphy M.R. 2017. Xylem and stomata, coordinated through time and space. – Plant Cell Environ. 40: 872–880. https://doi.org/10.1111/pce.12817

  11. Buckley T.N. 2019. How do stomata respond to water status? – New Phytol. 224: 21–36. https://doi.org/10.1111/nph.15899

  12. Bussotti F., Pollastrini M., Holland V., Brüggemann W. 2015. Functional traits and adaptive capacity of European forests to climate change. – Environ. Exp. Bot. 111: 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006

  13. Chen Y.J., Maenpuen P., Zhang Y.J., Barai K., Katabuchi M., Gao H., Kaewkamol S., Tao L.B., Zhang J.L. 2021. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? – New Phytol. 229: 805–819. https://doi.org/10.1111/nph.16927

  14. Chen Z., Zhu S., Zhang Y., Luan J., Li S., Sun P., Wan X., Liu S. 2020. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. – Tree Physiol. 40: 1029–1042. https://doi.org/10.1093/treephys/tpaa046

  15. Choat B., Cobb A.R., Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. – New Phytol. 177: 608–626. https://doi.org/10.1111/j.1469-8137.2007.02317.x

  16. Choat B., Jansen S., Brodribb T.J., Cochard H., Bhaskar R., Bucci S.J., Delzon S., Feild T.S., Gleason S., Jacobson A.L., Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mencuccini M., Mitchell P.J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S., Westoby M., Wright I.J., Zanne A. 2012. Global convergence in the vulnerability of forests to drought. – Nature. 491: 752–755. https://doi.org/10.1038/nature11688

  17. Deslauriers A., Giovannelli A., Rossi S., Castro G., Fragnelli G., Traversi L. 2009. Intra-annual cambial activity and carbon availability in stem of poplar. – Tree Physiol. 29: 1223–1235. https://doi.org/10.1093/treephys/tpp061

  18. FAO. 2020. Global Forest Resources Assessment 2020 – Key findings. Rome. 16 p. https://doi.org/10.4060/ca8753en

  19. Fonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., Eckstein D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. – New Phytol. 185 (1): 42–53. https://doi.org/10.1111/j.1469-8137.2009.03030.x

  20. Fritts H.C. 1976. Tree rings and climate. London. 567 p.

  21. Gauthey A., Peters J.M.R., Carins-Murphy M.R., Rodriguez-Dominguez C.M., Li X., Delzon S., King A., López R., Medlyn B.E., Tissue D.T., Brodribb T.J., Choat B. 2020. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. – New Phytol. 228: 884–897. https://doi.org/10.1111/nph.16746

  22. Gleason S.M., Westoby M., Jansen S., Choat B., Hacke U.G., Pratt R.B., Bhaskar R., Brodribb T.J., Bucci S.J., Cao K.F., Cochard H., Delzon S., Domec J.C., Fan Z.X., Feild T.S., Jacobsen A.L., Johnson D.M., Lens F., Maherali H., Martínez-Vilalta J., Mayr S., McCulloh K.A., Mencuccini M., Mitchell P.J., Morris H., Nardini A., Pittermann J., Plavcová L., Schreiber S.G., Sperry J.S., Wright I.J., Zanne A.E. 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. – New Phytol. 209: 123–136. https://doi.org/10.1111/nph.13646

  23. Groisman P., Shugart H., Kicklighter D., Henebry G., Tchebakova N., Maksyutov S., Monier E., Gutman G., Gulev S., Qi J., Prishchepov A., Kukavskaya E., Porfiriev B., Shiklomanov A., Loboda T., Shiklomanov N., Nghiem S., Bergen K., Albrechtova J., Chen J., Shahgedanova M., Shvidenko A., Speranskaya N., Soja A., de Beurs K., Bulygina O., McCarty J., Zhuang Q., Zolina O. 2017. Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. – Prog. Earth Planet. Sci. 4: 41. https://doi.org/10.1186/s40645-017-0154-5

  24. Gromtsev A.N. (ed.). 2003. Biotic diversity of Karelia: conditions of formation, communities and species. Petrozavodsk. 244 p. (In Russ. and Eng.)

  25. Hacke U.G. (ed.). 2015. Functional and Ecological Xylem Anatomy. Springer, Cham. 281 p. https://doi.org/10.1007/978-3-319-15783-2

  26. Hacke U.G., Sperry J.S. 2001. Functional and ecological xylem anatomy. – Perspect. Plant Ecol. Evol. Syst. 4 (2): 97–115.

  27. Hacke U.G., Spicer R., Schreiber S.G., Plavcová L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. – Plant Cell Environ. 40: 831–45. https://doi.org/10.1111/pce.12777

  28. Hochberg U., Rockwell F.E., Holbrook N.M., Cochard H. 2018. Iso/Anisohydry: a plant-environment interaction rather than a simple hydraulic trait. – Trends Plant Sci. 23: 112–120. https://doi.org/10.1016/j.tplants.2017.11.002

  29. Hughes M.K., Olchev A., Bunn A.G., Berner L.T., Loslebe M., Novenko E. 2019. Different climate responses of spruce and pine growth in Northern European Russia. – Dendrochronologia. 56: 125601. https://doi.org/10.1016/j.dendro.2019.05.005

  30. IAWA list of microscopic features for hardwood identification. 1989. – IAWA Bulletin. 10: 219–332.

  31. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. Cambridge. 1535 p.

  32. Jin K., Liu X., Wang K., Jiang Z., Tian G., Yang S., Shang L., Ma J. 2018. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus×euramericana. – Planta. 248: 849–858. https://doi.org/10.1007/s00425-018-2931-9

  33. Kannenberg S.A., Guo J.S., Novick K.A., Anderegg W.R.L., Feng X., Kennedy D., Konings A.G., Martínez-Vilalta J., Matheny A.M. 2022. Opportunities, challenges and pitfalls in characterizing plant water-use strategies. – Funct. Ecol. 36: 24–37. https://doi.org/10.1111/1365-2435.13945

  34. Kawai K., Minagi K., Nakamura T., Saiki S.T., Yazaki K., Ishida A. 2022. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. – Tree Physiol. 42 (2): 337–350. https://doi.org/10.1093/treephys/tpab100

  35. Kishchenko I.T., Vantenkova I.V. 2013. Sezonnyj rost listvennyh lesoobrazuyushchih vidov v taezhnoj zone Rossii (na primere Karelii) [Seasonal growth of deciduous forest-forming species in the taiga zone of Russia (on the example of Karelia)]. Petrozavodsk. 94 p. (In Russ.).

  36. Kishchenko I.T., Vantenkova I.V. 2014. Sezonnyj rost hvojnyh lesoobrazuyushchih vidov v taezhnoj zone Rossii (na primere Karelii) [Seasonal growth of coniferous forest-forming species in the taiga zone of Russia (by the example of Karelia)]. Petrozavodsk. 163 p. (In Russ.).

  37. Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. – Funct. Ecol. 28: 1313–1320. https://doi.org/10.1111/1365-2435.12289

  38. Lachenbruch B., McCulloh K.A. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. – New Phytol. 204: 747–764. https://doi.org/10.1111/nph.13035

  39. Lambers H., Oliveira R.S. 2019. Plant physiological ecology. Springer Nature Switzerland AG. 736 p.

  40. Manzoni S., Vico G., Katul G., Palmroth S., Jackson R.B., Porporato A. 2013. Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off. – New Phytol. 198: 169–178. https://doi.org/10.1111/nph.12126

  41. Martinez-Vilalta J., Garcia-Forner N. 2017. Water potential regulation, stomatal behavior and hydraulic transport under drought: deconstructing the iso/anisohydric concept. – Plant Cell Environ. 40: 962–976. https://doi.org/10.1111/pce.12846

  42. Meinzer F.C., Woodruff D.R., Marias D.E., Smith D.D., McCulloh K.A., Howard A.R., Magedman A.L. 2016. Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. – Ecol. Lett. 19: 1343–1352. https://doi.org/10.1111/ele.12670

  43. Nardini A., Savi T., Trifilò P., Gullo M.A. 2018. Drought stress and the recovery from xylem embolism in woody plants. – Progress in Botany. 79: 197–232. https://doi.org/10.1007/124_2017_11

  44. Nazarova L.E. 2015. Precipitation over the territory of Karelia. – Transactions of KarRC RAS. 9: 114–120 (In Russ.). https://doi.org/10.17076/lim56

  45. Niinemets U. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. – Forest Ecol. Manag. 260: 1623–1639. https://doi.org/10.1016/j.foreco.2010.07.054

  46. Nola P., Bracco F., Assini S., von Arx G., Castagneri D. 2020. Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. – Ann. For. Sci. 77 (8). https://doi.org/10.1007/s13595-019-0906-z

  47. Olano J.M., Linares J.C., García-Cervigón A.I., Arzac A., Delgado A., Rozas V. 2014. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. – Oecologia. 176 (1): 273–283. https://doi.org/10.1007/s00442-014-2989-4

  48. Oliveira R.S., Eller C.B., Barros F.d.V., Hirota M., Brum M., Bittencourt P. 2021. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. – New Phytol. 230: 904–923. https://doi.org/10.1111/nph.17266

  49. Olson M.E., Soriano D., Rosell J.A., Anfodillo T., Donoghue M.J., Edwards E.J., León-Gómez C., Dawson T., Martínez J.J.C., Castorena M., Echeverría A., Espinosa C.I., Fajardo A., Gazol A., Isnard S., Lima R.S., Marcati C.R., Méndez-Alonzo R. 2018. Plant height and hydraulic vulnerability to drought and cold. – Proc. Natl. Acad. Sci. USA. 115 (29): 7551–7556. https://doi.org/10.1073/pnas.1721728115

  50. Olson M.E., Anfodillo T., Rosell J.A., Petit G., Crivellaro A., Isnard S., León-Gómez C., Alvarado-Cárdenas L.O., Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. – Ecol. Lett. 17: 988–997. https://doi.org/10.1111/ele.12302

  51. Peel M.C., Finlayson B.L., McMahon T.A. 2007. Updated world map of the Koppen-Geiger climate classification. – Hydrol. Earth Syst. Sci. 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

  52. Pittermann J., Sperry J.S., Hacke U.G., Wheeler J.K., Sikkema E.H. 2005. Torus-margo pits help conifers compete with angiosperms. – Science 310: 1924. https://doi.org/10.1126/science.1120479

  53. Price D.T., Alfaro R.I., Brown K.J., Flannigan M.D., Fleming R.A., Hogg E.H., Girardin M.P., Lakusta T., Johnston M., McKenney D.W., Pedlar J.H., Stratton T., Sturrock R.N., Thompson I.D., Trofymow J.A., Venier L.A. 2013. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. – Environ. Rev. 21: 322–365. https://doi.org/10.1139/er-2013-0042

  54. Pridacha V.B., Sazonova T.A., Novichonok E.V., Semin D.E., Tkachenko Yu.N., Pekkoev A.N., Timofeeva V.V., Bakhmet O.N., Olchev A.V. 2021. Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. – Plant Soil. 466: 317–336. https://doi.org/10.1007/s11104-021-05058-w

  55. Pridacha V.B., Tikhova G.P., Sazonova T.A. 2018. The effect of abiotic factors on water exchange in coniferous and deciduous plants. – Transactions of KarRC RAS. 12: 76–86 (In Russ.). https://doi.org/10.17076/eb878

  56. Reich P.B., Sendall K.M., Stefanski A., Rich R.L., Hobbie S.E., Montgomery R.A. 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. – Nature. 562: 263–267. https://doi.org/10.1038/s41586-018-0582-4

  57. Rodriguez-Zaccaro F.D., Henry I.M., Groover A. 2021. Genetic regulation of vessel morphology in Populus. – Front. Plant Sci. 12. https://doi.org/10.3389/fpls.2021.705596

  58. Sazonova T.A., Bolondinskii V.K., Pridacha V.B. 2019. Resistance to moisture transport in the conductive system of Scots pine. – Russ. J. For. Sci. 6: 556–566 (In Russ.). https://doi.org/10.1134/S0024114819060081

  59. Scholz A., Klepsch M., Karimi Z., Jansen S. 2013. How to quantify conduits in wood? – Front. Plant Sci. 4: 56. https://doi.org/10.3389/fpls.2013.00056

  60. Sellin A., Taneda H., Alber M. 2019. Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula). – J. Plant Res. 132: 369–381. https://doi.org/10.1007/s10265-019-01106-w

  61. Sevanto S., Hölttä T., Holbrook N.M. 2011. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. – Plant Cell Environ. 34: 690–703. https://doi.org/10.1111/j.1365-3040.2011.02275.x

  62. Simard S., Giovannelli A., Treydte K., Traversi M.L., King G.M., Frank D., Fonti P. 2013. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. – Tree Physiol. 33: 913–923. https://doi.org/10.1093/treephys/tpt075

  63. Sperry J.S., Hacke U.G., Pitterman J. 2006. Size and function in conifer tracheids and angiosperm vessels. – Am. J. Bot. 93: 1490–1500. https://doi.org/10.3732/ajb.93.10.1490

  64. Sperry J.S., Love D.M. 2015. What plant hydraulics can tell us about responses to climate-change droughts. – New Phytol. 207: 14–27. https://doi.org/10.1111/nph.13354

  65. Sterck F.J., Zweifel R., Sass-Klaassen U., Chowdhury Q. 2008. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). – Tree Physiol. 28 (4): 529–36. https://doi.org/10.1093/treephys/28.4.529

  66. Stroock A.D., Pagay V.V., Zwieniecki M.A., Holbrook N.M. 2014. The physicochemical hydrodynamics of vascular plants. – Annu. Rev. Fluid Mech. 46: 615–642. https://doi.org/10.1146/annurev-fluid-010313-141411

  67. Sviderskaya I.V., Vaganov E.A., Fonti M.V., Fonti P. 2021. Isometric scaling to model water transport in conifer tree rings across time and environments. – J. Exp. Bot. 72: 2672–2685. https://doi.org/10.1093/jxb/eraa595

  68. Tikhova G.P., Pridacha V.B., Sazonova T.A. 2017. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae) trees. – Sib. J. For. Sci. 1: 56–64 (In Russ.). https://doi.org/10.15372/SJFS20170106

  69. Tyree M.T., Zimmermann M.H. 2002. Xylem Structure and the Ascent of Sap. 2nd Edn. Berlin, Heidelberg, New York. 365 p.

  70. Urli M., Porté A.J., Cochard H., Guengant Y., Burlett R., Delzon S. 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. – Tree Physiol. 33: 672–83. https://doi.org/10.1093/treephys/tpt030

  71. Vaganov E.A., Hughes M.K., Shashkin A.V. 2006. Growth dynamics of conifer tree rings images of past and future environments. Berlin. 367 p.

  72. Venturas M.D., Sperry J.S., Hacke U.G. 2017. Plant xylem hydraulics: what we understand, current research, and future challenges. – J. Integr. Plant Biol. 59 (6): 356–389. https://doi.org/10.1111/jipb.12534

  73. Xiong D., Nadal M. 2020. Linking water relations and hydraulics with photosynthesis. – Plant J. 101 (4): 800–815. https://doi.org/10.1111/tpj.14595

  74. Zheng J., Li Y., Morris H., Vandelook F., Jansen S. 2022. Variation in tracheid dimensions of conifer xylem reveals evidence of adaptation to environmental conditions. – Front. Plant Sci. 13. https://doi.org/10.3389/fpls.2022.774241

Дополнительные материалы отсутствуют.