Цитология, 2023, T. 65, № 4, стр. 384-394

Морфологические изменения эритроцитов у новорожденных, перенесших перинатальную гипоксию

О. Д. Денисенко 1*, С. А. Перепелица 12, В. А. Сергунова 2, С. С. Ляпунова 2, Л. С. Литвинова 1

1 Балтийский федеральный университет им. Иммануила Канта
236016 Калининград, Россия

2 Научно-исследовательский институт общей реаниматологии им. В.А. Неговского Федерального научно-клинического центра реаниматологии и реабилитологии
107031 Москва, Россия

* E-mail: ksushadenisenko@mail.ru

Поступила в редакцию 07.02.2023
После доработки 06.03.2023
Принята к публикации 27.03.2023

Аннотация

Несмотря на активное исследование функциональных свойств эритроцитов при патологических состояниях, данная проблема достаточно актуальна. Одной из причин дистресса плода и новорожденного является гипоксия. Последствия негативного влияния дефицита кислорода для эмбриона и плода могут проявляться как внутриутробно, так и после рождения, приводя к заболеваниям различного рода. Цель настоящей работы – изучение влияния ацидоза, как маркера перинатальной гипоксии, на мембрану эритроцитов у новорожденных в раннем неонатальном периоде. Применение атомно-силового микроскопа позволило получить изображения и профили клеток для оценки морфологических и структурных особенностей эритроцитов при гипоксии у детей в раннем неонатальном периоде. Установлено, что перинатальная гипоксия вызывает изменение морфологии и структур мембран эритроцитов. Ранний неонатальный период характеризуется изменением морфологических форм и нестабильностью мембран эритроцита.

Ключевые слова: новорожденные, перинатальная гипоксия, мембрана эритроцитов, морфология эритроцитов

Список литературы

  1. Белевич Е.И., Костин Д.Г., Слобожанина Е.И. 2015. Активность каспазы-3 в эритроцитах человека при окислительном стрессе. Известия Национальной академии наук Беларуси. Серия биол. наук. № 2. С. 34. (Bialevich E.I., Kostin D.G., Slobozhanina E.I. 2015. Caspase-3 activity in human erythrocytes under oxidative stress. Izvestiya Natsional’noy Akademii Nauk Belarusi. Seriya boil. Nauk. № 2. P. 34.)

  2. Ващенко В.И., Вильянинов В.Н. 2019. Эриптоз (квазиапоптоз) эритроцитов человека и его роль в лекарственной терапии. Обзоры по клинической фармакологии и лекарственной терапии. Т. 17. № 3. С. 5. (Vaschenko V.I., Vil’yaninov V.N. 2019. Eryptosis (quasi-apoptosis) of the human red blood cells. Its role in medicinal therapy. Reviews on Clinical Pharmacology and Drug Therapy. V. 17. P. 5.) https://doi.org/10.17816/RCF1735-38

  3. Володин Н.Н. 2019. Неонатология. Национальное руководство. М.: ГЭОТАР-Медиа. (Volodin N.N. 2019. Neonatology: National guidelines. Short edition. M.: GEOTAR-Media.)

  4. Кононенко В.Л. 2009. Фликкер эритроцитов. 1. Теоретические модели и методы регистрации. Биологические мембраны. Т. 26. № 5. С. 352. (Kononenko V.L. 2009. Red blood cell flicker. 1. Theoretical models and methods of registration. Biol. membranes. V. 26. № 5. P. 352)

  5. Льюис С.М., Бэйн Б., Бэйтс И. 2009. Практическая и лабораторная гематология. М.: ГЭОТАР-МЕД. (L’juis S.M., Bjejn B., Bjejts I. 2006. Practical gematology. Churchill Livingstone.)

  6. Мельченко Е.А. 2015. Применение атомно-силовой микроскопии при исследовании биофизических свойств мембран эритроцитов. Наука. Инновации. Технологии. № 3. С. 131. (Melchenko E.A. 2015. Application of atomic-power microscopy at research of biophysical properties of red blood cells membranes. Science. Innovations. Technologies. № 3. P. 131)

  7. Мороз В.В., Голубев А.М., Афанасьев А.В., Кузовлев А.Н., Сергунова В.А., Гудкова О.Е., Черныш А.М. 2012. Строение и функция эритроцита в норме и при критических состояниях. Общая реаниматология. Т. 8. № 1. С. 52. (Moroz V.V., Golubev A.M., Afanasyev A.V., Kuzovlev A.N., Sergunova V.A., Gudkova O.E., Chernysh A.M. 2012. Stroenie i funktsiya eritrotsita v norme i pri kriticheskikh sostoyaniyalh. Obshchaya Reanimatologiya. V. 8. P. 52.)

  8. Мушкамбаров Н.Н., Кузнецов С.Л. 2007. Молекулярная биология. Учебное пособие для студентов мед. вузов. М.: ООО Медицинское информационное агентство.

  9.          (Mushkambarov N.N., Kuznetsov S.L. 2007. Molecular biology. Study guide for medical students. Moscow: Med. Inform. Agency.)

  10. Новицкий В.В., Рязанцева Н.В., Степовая Е.А., Быстрицкий Л.Д., Ткаченко С.Б. 2003. Клинический патоморфоз эритроцита: Атлас. Томск. (Novitsky V.V., Ryazantseva N.V., Stepovaya E.A., Bystrisky L.D., Tkachenko S.B. 2003. Clinical erythrocyte pathomorphosis. Atlas. Tomck.)

  11. Перепелица С.А., Сергунова В.А., Гудкова О.Е. 2014а. Состояние мембраны эритроцитов недоношенных новорожденных в раннем неонатальном периоде. Общая реаниматология. Т. 10. № 6. С. 46. (Perepelitsa C.A., Sergunova V.A., Gudkova O.E. 2014a. The red blood cell membrane of preterm infants in the early neonatal period. Obshchaya Reanimatologiya. V. 10. P. 46.)

  12. Перепелица С.А., Сергунова В.А., Гудкова О.Е. 2017. Влияние перинатальной гипоксии на морфологию эритроцитов у новорожденных. Общая реаниматология. Т. 13. № 2. С.14. (Perepelitsa C.A., Sergunova V.A., Gudkova O.E. 2017. The effect of perinatal hypoxia on red blood cell morphology in newborns. Obshchaya Reanimatologiya. V. 13. P. 14.)

  13. Перепелица С.А., Сергунова В.А., Гудкова О.Е., Алексеева С.В. 2014б. Особенности мембран эритроцитов недоношенных новорожденных при многоплодной беременности. Общая реаниматология. Т. 10. № 1. С. 12. (Perepelitsa S.A., Sergunova V.A., Gudkova O.E., Alekseyeva S.V. 2014b. Osobennosti membran eritrotsitov nedonoshennykh novorozhdennykh pri mnogoplodnoi beremennosti. Obshchaya Reanimatologiya. V. 10. P. 12.)

  14. Рязанцева Н.В., Новицкий В.В. 2004. Типовые нарушения молекулярной организации мембраны эритроцита при соматической и психической патологии. Успехи физиол. наук. Т. 35. № 1. С. 53. (Ryazantseva N.V., Novitskii V.V. 2004. Typical disorders in molecular organization of erythrocyte membrane in patient with somatic and mental patholory. Uspekhi Physiol. Nauk. V. 35. № 1. P. 53.)

  15. Сергунова В.А., Козлова Е.К., Мягкова Е.А., Черныш А.М. 2015. Измерение упругоэластичных свойств мембраны нативных эритроцитов in vitro. Общая реаниматология. Т. 11. № 3. С. 39. (Sergunova V.A., Kozlova E.K., Myagkova E.A., Chernysh A.M. 2015. In Vitro measurement of the elastic properties of the native red blood cell membrane. Obshchaya Reanimatologiya V. 11. P. 39.)

  16. Стародубцева М.Н., Воропаев Е.В., Петренёв Д.Р., Мицура В.М., Егоренков Н.И. 2015. АСМ-диагностика патологии эритроцитов на основе физико-механического образа клеточной поверхности. Проблемы здоровья и экологии. Т. 44. № 2. С. 99. (Starodubtseva M.N., Voropayev E.V., Petrenyov D.R., Mitsura V.M., Yegorenkov N.I. 2015. AFM diagnostics of red blood cell pathology based on the physical and mechanical image of the cell membrane. Problemy zdorovʹâ i èkologii V. 44. № 2. P. 99.)

  17. Трошкина H.А., Циркин В.И., Дворянский С.А. 2007 Эритроцит: строение и функции его мембраны. Вятский медицинский вестник. Т. 3. № 2. С. 32. (Troshkina N.A., Tsirkin V.I., Dvoryanskiy S.A. 2007. Erythrocyte: membrane structure and function. Vyatka Medical Bulletin. V. 3. № 2. P. 32.)

  18. Хадарцев А.А., Наумова Э.М., Валентинов Б.Г., Рогачев Р.В. 2022. Эритроциты и окислительный стресс. Вестник новых медицинских технологий. Т. 29. № 1. С. 93. (Khadartsev A.A., Naumova E.M., Valentinov B.G., Grachev R.V. 2022. Erythrocytes and oxidative stress (literature review). J. New Medical Technol. V. 29. P. 93.)

  19. Шерстюкова Е.А., Иноземцев В.А., Козлов А.П., Гудкова О.Е., Сергунова В.А. 2021. Атомно-силовая микроскопия в оценке механических свойств мембран эритроцитов при воздействии различных физико-химических агентов. Альманах клинической медицины. Т. 49. № 6. С. 427. (Sherstyukova E.A., Inozemtsev V.A., Kozlov A.P., Gudkova O.E., Sergunova V.A. 2021. Atomic force microscopy in the assessment of erythrocyte membrane mechanical properties with exposure to various physicochemical agents. Almanac Clinical Med. V. 49. P. 427.)

  20. Чайка Н.А., Данилова Л.А., Литвиненко Л.А. 2019. Преэклампсия и здоровье новорожденных. Медицина: теория и практика. № 4. С. 593. (Chajka N.A., Danilova L.A., Litvinenko L.A. 2019. Prejeklampsija i zdorov’e novoro-zhdennyh. Medicina: teorija i praktika. 2019. № 4. P. 593.)

  21. Чумакова С.П., Уразова О.И., Зима А.П., Новицкий В.В. 2018. Особенности физиологии эритроцитов. Гемолиз и эриптоз. Гематология и трансфузиология. Т. 63. № 4. С. 343. (Chumakova S.P., Urazova O.I., Zima A.P., Novitskiy V.V. 2018. Features of the physiology of erythrocytes. Hemolysis and eryptosis. Hematology and Transfusiology. V. 63. P. 343.)

  22. Binnig G., Quate C.F., Gerber C. 1986. Atomic force microscope. Phys. Rev. Lett. V. 56. P. 93.

  23. Demchenkov E.L., Nagdalian A.A., Budkevich R.O., Oboturova N.P., Okolelova A.I. 2020. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicol Environ. Saf. 208. P. 111 683. https://doi.org/10.1016/j.ecoenv.2020.111683

  24. Dodd J.M., Grivell R.M., OBrien C.M., Dowswell T., Deussen A.R. 2017. Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy. Cochrane Database Syst Rev. V. 2017. № 10. P. D012024. https://doi.org/10.1002/14651858.CD012024.pub2

  25. Geekiyanage N.M., Balanant M.A., Sauret E., Saha S., Flower R., Lim C.T., Gu Y.T. 2019. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS One. V. 14. P. e0215447. https://doi.org/10.1371/journal.pone.0215447

  26. Jaferzadeh K., Sim M., Kim N., Moon I. 2019. Quantitative analysis of three-dimensional morphology and membrane dynamics of red blood cells during temperature elevation. Scientific Reports. V. 9. P. 1.

  27. Kamruzzahan A.S.M., Kienberger F., Stroh C.M., Berg J., Huss R., Ebner A., Zhu R., Rankl C., Gruber H.J., Hinterdorfer P. 2004. Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM. Biol. Chem. V. 385. P. 955.

  28. Kim Y., Park J., Kim M. 2017. Diagnostic approaches for inherited hemolytic anemia in the genetic era. Blood Res. V. 52. P. 84.

  29. Kodippili G.C., Spector J., Sullivan C. 2009. Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. Blood. V. 113. P. 6237.

  30. Kozlova E.K., Chernysh A.M, Moroz V.V., Kuzovlev A.N. 2013. Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images. Micron. V. 44. P. 218. https://doi.org/10.1016/j.micron.2012.06.012

  31. Kozlova E., Chernysh A., Sergunova V., Gudkova O., Manchenko E., Kozlov A. 2018.Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. Journal of Molecular Recognition. V. 31. № 10. P. 2724. https://doi.org/10.1002/jmr.2724

  32. Kozlova E., Chernysh A., Sergunova V., Manchenko E., Moroz V., Kozlov A. 2019. Conformational distortions of the red blood cell spectrin matrix nanostructure in response to temperature changes in vitro. Scanning. V. 2019. P. 8218912. https://doi.org/10.1155/2019/8218912

  33. Lim H.W.G., Wortis M., Mukhopadhyay R. 2009. Red blood cell shapes and shape transformations. Newtonian mechanics of a composite membrane. Sections 2.5–2.8. In: Soft Matter. Hoboken: Wiley-VCH Verlag GmbH & Co. KGaA. P. 83.

  34. https://doi.org/10.1002/9783527623372.ch2a

  35. Niece K.L., Boyd N.K., Akers K.S. 2015. In vitro study of the variable effects of proton pump inhibitors on voriconazole. Antimicrob. Agents Chemother. V. 59. P. 5548. https://doi.org/10.1128/AAC.00884-15

  36. Perrone S., Tataranno M.L., Stazzoni G., Del Vecchio A., Buonocore G. 2012. Oxidative injury in neonatal erythrocytes. J. Matern. Fetal. Neonatal. Med. V. 25 P. 104.

  37. O’Sullivan M.P., Looney A.M., Moloney G.M., Finder M., Hallberg B., Clarke G., Boylan G.B., Murray D.M. 2019. Validation of altered umbilical cord blood microRNA Expression in neonatal hypoxic-ischemic encephalopathy. JAMA Neurol. V. 76. P. 333. https://doi.org/10.1001/jamaneurol.2018.4182

  38. Revin V.V., Gromova N.V., Revina E.S., Prosnikova K.V., Revina N.V., Bochkareva S.S., Stepushkina O.G., Grunyushkin I.P., Tairova M.R., Incina V. 2019. I. Effects of polyphenol compounds and nitrogen oxide donors on lipid oxidation, membrane-skeletal proteins, and erythrocyte structure under hypoxia. BioMed. Res. Int. 2019. Article ID 6758017. https://doi.org/10.1155/2019/6758017

  39. Rudenko S.V. 2010. Erythrocyte morphological states, phases, transitions and trajectories. Biochim. Biophys. Acta–Biomembranes. V. 1798. P. 1767.

  40. Sergunova V., Leesment S., Kozlov A., Inozemtsev V., Platitsina P., Lyapunova S., Onufrievich A., Polyakov V., Sherstyukova E. 2022. Investigation of red blood cells by atomic force microscopy. Sensors (Basel). V. 22. P. 2055. https://doi.org/10.3390/s22052055

  41. Shankaran S. 2015. Therapeutic hypothermia for neonatal encephalopathy. Curr. Opin. Pediatr. V. 2. P. 152.

  42. Starodubtseva M.N., Karachrysafi S., Shkliarava N.M., Chelnokova I.A., Kavvadas D., Papadopoulou K., Samara P., Papaliagkas, Sioga A., Komnenou A., Karampatakis V., Papamitsou T. 2022. The Effects of intravitreal administration of antifungal drugs on the structure and mechanical properties peripheral blood erythrocyte surface in rabbits. Int. J. Mol. Sci. V. 23. P. 10464. https://doi.org/10.3390/ijms231810464

  43. Steiner L.A., Gallagher P.G. 2007. Erythrocyte disorders in the perinatal period. Semin. Perinatol. V. 31 P. 254.

  44. Tachev K.D., Danov K.D., Kralchevsky P.A. 2004. On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model. Colloids Surfaces B: Biointerfaces. V. 34. P. 123. https://doi.org/10.1016/j.colsurfb.2003.12.011

  45. Zhang Y., Zhang W., Wang S., Wang C., Xie J., Chen X., Xu Y., Mao P. 2012. Detection of erythrocytes in patients with multiple myeloma using atomic force microscopy. Scanning. V. 34. P. 295.

  46. Zhong Q., Inniss D., Kjoller K., Elings V. 1993. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Science Letters. V. 290. P. 688.

Дополнительные материалы отсутствуют.