Цитология, 2023, T. 65, № 4, стр. 313-322

Тирамидная амплификация сигнала: новые возможности для in situ гибридизации ДНК

Е. О. Воронцова 12*, Д. А. Юрченко 1, Н. В. Шилова 1

1 Медико-генетический научный центр им. акад. Н.П. Бочкова
115478 Москва, Россия

2 Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Министерства здравоохранения РФ
117997 Москва, Россия

* E-mail: veo.1998@mail.ru

Поступила в редакцию 10.03.2023
После доработки 17.04.2023
Принята к публикации 20.04.2023

Аннотация

Гибридизация ДНК in situ (in situ hybridization, ISH) – широко используемый метод молекулярной цитогенетики, который позволяет локализовать конкретные последовательности ДНК в определенных участках хромосом. Для реализации гибридизации ДНК in situ необходимо использование ДНК-зондов, которые могут быть коммерческими (серийными), а также несерийными, т.е. могут быть разработаны под конкретные задачи исследования (homemade). Одним из существенных недостатков последних является низкая интенсивность гибридизационного сигнала, когда ДНК-зонд имеет небольшие размеры. Поэтому разработка подходов, направленных на получение оптимального соотношения шум/сигнал при использовании таких несерийных ДНК-зондов, является актуальной задачей современной молекулярной цитогенетики. Методом, позволяющим визуализировать небольшие последовательности ДНК непосредственно на хромосоме, является тирамидная амплификация сигнала (tyramide signal amplification, TSA). В основе системы TSA лежит образование ковалентной связи между богатыми электронами фрагментами белков образца и молекулами тирамида, связанными с гаптеном (при хромогенной ISH) или флуорофором (при флуоресцентной ISH). Это реализуется за счет превращения молекул тирамида в свободнорадикальные промежуточные соединения под действием пероксидазы хрена (HRP), а затем отложения осажденных молекул вблизи нее. В результате наблюдается усиление сигнала малой интенсивности. Таким образом, TSA является хорошим дополнением метода гибридизации ДНК in situ благодаря своей высокой чувствительности и возможности детекции небольших геномных дисбалансов и, соответственно, может стать ценным инструментом для диагностики хромосомных перестроек в клинической практике.

Ключевые слова: тирамид, ДНК, тирамидная амплификация, флуоресцентная гибридизация in situ, хромогенная гибридизация in situ

Список литературы

  1. Атякшин Д.А., Костин А.А., Шишкина В.В., Бухвалов И.Б., Тиманн М. 2022. Особенности распределения фермента CD38 в триптаза-позитивных тучных клетках: цитофизиологические и гистотопографические аспекты. Журнал анатомии и гистопатологии. Т. 11. № 1. С. 9. (Atjakshin D.A., Kostin A.A., Shishkina V.V., Buhvalov I.B., Timann M. 2022. Features of CD38 enzyme distribution in tryptase-positive mast cells: cytophysiological and histotopographic aspects. J. Anat. Histopathol. V. 11. № 1. P. 9.)

  2. Ведяйкин А.Д., Ходорковский М.А., Вишняков И.Е. 2019. Методы флуоресцентной микроскопии сверхвысокого разрешения и их использование для визуализации различных клеточных структур. Цитология. Т. 61. № 5. С. 343. (Vedyaykin A.D., Khodorkovskii M.A., Vishnyakov I.E. 2019. Super-resolution microscopy methods and their use for visualization of various cell structures. Tsitologiya. V. 61. № 5. P. 343.)

  3. Жигалина Д.И., Скрябин Н.А., Васильева О.Ю., Лопаткина М.Е., Васильев С.А., Сивоха В.М., Беляева Е.О., Савченко Р.Р., Назаренко Л.П., Лебедев И.Н. 2020. FISH-диагностика хромосомной транслокации с использованием технологии синтеза локус-специфичных ДНК-зондов на основе ПЦР длинных фрагментов. Генетика. Т. 56. № 6. С. 704. (Zhigalina D.I., Skryabin N.A., Vasilieva O.Yu., Lopatkina M.E.I., Vasiliev S.A., Sivokha V.M., Belyaeva E.O., Savchenko R.R., Nazarenko L.P., Lebedev I.N. 2020. FISH diagnostics of chromosomal translocation with the technology of synthesis of locus-specific dna probes based on long-range PCR. Russian J. Gen. V. 56. № 6. P. 704.)

  4. Рубцов Н.Б. 2006. Методы работы с хромосомами млекопитающих: учебное пособие. Новосибирский гос. ун-т. Новосибирск. 152 с. (Rubtsov N.B. 2006. Metody raboty s hromosomami mlekopitayushchih: ucheb. posobie. Novosib. gos. un-t. Novosibirsk. 152 p.)

  5. Твеленёва А.А., Шилова Н.В. 2019. Методы верификации субмикроскопических клинически значимых вариаций числа копий участков ДНК. Медицинская генетика. Т. 18. № 3. С. 26. (Tveleneva A.A., Shilova N.V. 2019. Methods for verification of submicroscopic pathogeni copy number variations. Medicinskaya genetika [Medical genetics]. V. 18. № 3. С. 26.)

  6. Херрингтон С., Макги Дж. (Под. ред.) 1999. Молекулярная клиническая диагностика. Методы. М. Мир. 558 с. (Herrington C., McGee J. (Eds.) 1999. Diagnostic molecular pathology. A practical approach. Oxford University Press. 558 p.)

  7. Alamri A., Nam J.Y., Blancato J.K. 2017. Fluorescence in situ hybridization of cells, chromosomes, and formalin-fixed paraffin-embedded tissues. Methods Mol. Biol. V. 1606. P. 265.

  8. Bagheri G., Lehner J.D., Zhong J. 2017. Enhanced detection of Rickettsia species in Ixodes pacificus using highly sensitive fluorescence in situ hybridization coupled with tyramide signal amplification. Ticks Tick Borne Dis. V. 8. P. 915.

  9. Bobrow M.N., Harris T.D., Shaughnessy K.J., Litt G.J. 1989. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods. V. 125. P. 279.

  10. Buckley K.M., Dong P., Cameron R.A., Rast J.P. 2018. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Brief Funct. Genomics. V. 17. P. 362.

  11. Chen H., Feng X., Jiang M., Xiao B., Zhang J., Zhang W., Hu Y., Sui Z. 2020. Estimating the ploidy of Gracilariopsis lemaneiformis at both the cellular and genomic level. J. Phycol. V. 56. P. 1339.

  12. Chen Y., Zhang Y., Wang Y., Zhang L., Brinkman E.K., Adam S.A., Goldman R., van Steensel B., Ma J., Belmont A.S. 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. V. 217. P. 4025.

  13. Cheung S.W., Bi W. 2018. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev. Mol. Diagn. V. 18. P. 531.

  14. Cole S.H., Carney G.E., McClung C.A., Willard S.S., Taylor B.J., Hirsh J. 2005. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. V. 280. P. 14948.

  15. Dimitri P. 2004. Fluorescent in situ hybridization with transposable element probes to mitotic chromosomal heterochromatin of Drosophila. Methods Mol. Biol. V. 260. P. 29.

  16. Einarson O.J., Sen D. 2017. Self-biotinylation of DNA G-quadruplexes via intrinsic peroxidase activity. Nucleic Acids Res. V. 45. P. 9813.

  17. Florijn R.J., Bonden L.A., Vrolijk H., Wiegant J., Vaandrager J.W., Baas F., den Dunnen J.T., Tanke H.J., van Ommen G.J., Raap A.K. 1995. High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet. V. 4. P. 831.

  18. Fominaya A., Loarce Y., González J.M., Ferrer E. 2016. Tyramide signal amplification: fluorescence in situ hybridization for identifying homoeologous chromosomes. Methods Mol. Biol. V. 1429. P. 35.

  19. Francisco-Cruz A., Parra R., Tetzlaff M.T., Wistuba II. 2020. Multiplex immunofluorescence assays. Methods Mol. Biol. V. 2055. P. 467.

  20. Foster H.A., Sturmey R.G., Stokes P.J., Leese H.J., Bridger J.M., Griffin D.K. 2010. Fluorescence in situ hybridization on early porcine embryos. Methods Mol. Biol. V. 659. P. 427.

  21. Green M.R., Sambrook J. 2020. Labeling of DNA probes by nick translation. Cold Spring Harb Protoc. V. 7. P. 100 602.

  22. Gross R.A., Kumar A., Kalra B. 2001. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. V. 101. P. 2097.

  23. Hopman A.H.N., Ramaekers F.C.S., Speel E.J.M. 1998. Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for in situ hybridization using CARD-amplification. J. Histochem. Cytochem. V. 46. P. 771.

  24. Hoskins R.A., Smith C.D., Carlson J.W., Carvalho A.B., Halpern A., Kaminker J.S., Kennedy C., Mungall C.J., Sullivan B.A., Sutton G.G., Yasuhara J.C., Wakimoto B.T., Myers E.W., Celniker S.E., Rubin G.M., Karpen G.H. 2002. Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol. V. 3. P. RESEARCH0085.

  25. Khrustaleva L., Kudryavtseva N., Romanov D., Ermolaev A., Kirov I. 2019. Comparative Tyramide-FISH mapping of the genes controlling flavor and bulb color in Allium species revealed an altered gene order. Sci. Rep. V. 9. P. 12007.

  26. Kudryavtseva N., Ermolaev A., Karlov G., Kirov I., Shigyo M., Sato S., Khrustaleva L. 2021. A dual-color Tyr-FISH method for visualizing genes/markers on plant chromosomes to create integrated genetic and cytogenetic maps. Int. J. Mol. Sci. V. 22. P. 5860.

  27. Larracuente A.M., Ferree P.M. 2015. Simple method for fluorescence DNA in situ hybridization to squashed chromosomes. J. Vis. Exp. V. 95. P. 52288.

  28. Levy B., Wapner R. 2018. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. V. 109. P. 201.

  29. Liehr T., Weise A., Hamid A.B., Fan X., Klein E., Aust N., Othman M.A., Mrasek K., Kosyakova N. 2013. Multicolor FISH methods in current clinical diagnostics. Expert Rev. Mol. Diagn. V. 13. P. 251.

  30. Liehr T. 2018. Chromothripsis detectable in small supernumerary marker chromosomes (sSMC) using fluorescence in situ hybridization (FISH). Methods Mol. Biol. V. 1769. P. 79.

  31. Monaco A.P., Larin Z. 1994. ACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. V. 12. P. 280.

  32. Morozkin E.S., Karamysheva T.V., Laktionov P.P., Vlassov V.V., Rubtsov N.B. 2013. DNA probes for FISH analysis of C-negative regions in human chromosomes. Methods Mol. Biol. V. 1039. P. 233.

  33. Navarro-Domínguez B., Ruiz-Ruano F.J., Camacho J.P.M., Cabrero J., López-León M.D. 2017. Transcription of a B chromosome CAP-G pseudogene does not influence normal condensin complex genes in a grasshopper. Sci. Rep. V. 7. P. 17 650.

  34. Nielsen K.L., Indiani C., Henriksen A., Feis A., Becucci M., Gajhede M., Smulevich G., Welinder K.G. 2001. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochem. V. 40. P. 11013.

  35. Pandey V.P., Awasthi M., Singh S., Tiwari S., Dwivedi U.N. 2017. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. V. 6. P. 308.

  36. Pérez R., de Bustos A., Jouve N., Cuadrado A. 2009. Localization of Rad50, a single-copy gene, on group 5 chromosomes of wheat, using a FISH protocol employing tyramide for signal amplification (Tyr-FISH). Cytogenet. Genome Res. V. 125. P. 321.

  37. Raap A.K., van de Corput M.P., Vervenne R.A., van Gijlswijk R.P., Tanke H.J., Wiegant J. 1995. Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum. Mol. Genet. V. 4. P. 529.

  38. Rees J.S., Li X.W., Perrett S., Lilley K.S., Jackson A.P. 2015. Selective proteomic proximity labeling assay using tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. Curr. Protoc. Protein Sci. V. 80. P. 19.27.1.

  39. Rosa F.E., Santos R.M., Rogatto S.R., Domingues M.A. 2013. Chromogenic in situ hybridization compared with other approaches to evaluate HER2/neu status in breast carcinomas. Braz. J. Med. Biol. Res. V. 46. P. 207.

  40. Sader M.A., Dias Y., Costa Z.P., Munhoz C., Penha H., Bergès H., Vieira M.L.C., Pedrosa-Harand A. 2019. Identification of passion fruit (Passiflora edulis) chromosomes using BAC-FISH. Chromosome Res. V. 27. P. 299.

  41. Sáez A., Andreu F.J., Seguí M.A., Baré M.L., Fernández S., Dinarés C., Rey M. 2006. HER-2 gene amplification by chromogenic in situ hybridisation (CISH) compared with fluorescence in situ hybridisation (FISH) in breast cancer-A study of two hundred cases. Breast. V. 15. P. 519.

  42. Sarac I., Hollenstein M. 2019. Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids. Chembiochem. V. 20. P. 860.

  43. Schriml L.M., Padilla-Nash H.M., Coleman A., Moen P., Nash W.G., Menninger J., Jones G., Ried T., Dean M. 1999. Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than 1 kb in size. Biotechniques. V. 27. P. 608.

  44. Speel E.J., Hopman A.H., Komminoth P. 2006. Tyramide signal amplification for DNA and mRNA in situ hybridization. Methods Mol. Biol. V. 326. P. 33.

  45. Speel E. 1999. Detection and amplification systems for sensitive, multiple-target DNA and RNA in situ hybridization: looking inside cells with a spectrum of colors. Histochem. V. 112. P. 89.

  46. Speel E.J., Hopman A.H., Komminoth P. 1999. Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J. Histochem. Cytochem. V. 47. P. 281.

  47. Stack E.C., Wang C., Roman K.A., Hoyt C.C. 2014. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. V. 70. P. 46.

  48. Veselinyová D., Mašlanková J., Kalinová K., Mičková H., Mareková M., Rabajdová M. 2021. Selected in situ hybridization methods: principles and application. Molecules. V. 26. P. 3874.

  49. Ye C.J., Heng H.H. 2017. High resolution fiber-fluorescence in situ hybridization. Methods Mol. Biol. V. 1541. P. 151.

  50. Yurchenko D.A., Minzhenkova M.E., Dadali E.L., Markova Z.G., Rudenskaya G.E., Matyushchenko G.N., Kanivets I.V., Shilova N.V. 2022. Clinical manifestations of various molecular cytogenetic variants of eight cases of “8p inverted duplication/deletion syndrome”. Biomedicines. V. 10. P. 567.

Дополнительные материалы отсутствуют.