Доклады Российской академии наук. Науки о жизни, 2023, T. 511, № 1, стр. 349-353

Комбинированное облучение гамма-квантами и ядрами углерода-12 модулирует продукцию хемокинов и цитокинов мозга и улучшает пространственное обучение у tau p301s, но не 5xfad линий мышей

В. С. Кохан 1*, М. С. Нестеров 2, А. И. Левашова 2

1 Федеральный медицинский исследовательский центр психиатрии и наркологии им. В.П. Сербского
Москва, Россия

2 Научный центр биомедицинских технологий Федерального медико-биологического агентства России
п. Светлые горы, Московская область, Россия

* E-mail: viktor_kohan@hotmail.com

Поступила в редакцию 22.02.2023
После доработки 21.03.2023
Принята к публикации 21.03.2023

Аннотация

Ранее нами было показано прокогнитивное действие низких доз комбинированного облучения (включая тяжелые заряженные частицы) на крысах Wistar. В настоящей работе было изучено влияние облучения (гамма-лучи, 0.24 Гр; углерод-12, 0.18 Гр, 400 МэВ/нуклон) на течение нейродегенеративного процесса с использованием трансгенных мышей линий Tau P301S и 5xFAD – экспериментальных моделей болезни Альцгеймера. Облучение привело к росту содержания про- и противовоспалительных цитокинов и хемокинов (IL-2, IL-6, IL-10, KC) у мышей Tau P301S, но не 5xFAD. Вместе с тем только у линии Tau P301S было обнаружено радиационно-вызванное улучшение динамики пространственного научения.

Ключевые слова: ионизирующее излучение, углерод-12, нейровоспаление, болезнь Альцгеймера, пространственное научение, интерлейкины, хемокины

Список литературы

  1. Bert C., Engenhart-Cabillic R., Durante M. Particle therapy for noncancer diseases // Medical physics. 2012. V. 39. № 4. P. 1716–1727.

  2. Kokhan V.S., Anokhin P.K., Belov O.V., et al. Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions // Neuroscience. 2019. V. 416. P. 295–308.

  3. Perez R.E., Younger S., Bertheau E., et al. Effects of chronic exposure to a mixed field of neutrons and photons on behavioral and cognitive performance in mice // Behavioural brain research. 2020. V. 379. P. 112377.

  4. Whoolery C.W., Yun S., Reynolds R.P., et al. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation // Scientific reports. 2020. V. 10. № 1. P. 2737.

  5. Boyd A., Byrne S., Middleton R.J., et al. Control of Neuroinflammation through Radiation-Induced Microglial Changes // Cells. 2021. V. 10. № 9. P. 2381.

  6. Yoshiyama Y., Higuchi M., Zhang B., et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model // Neuron. 2007. V. 53. № 3. P. 337–351.

  7. Jawhar S., Trawicka A., Jenneckens C., et al. Motor deficits. № euron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease // Neurobiology of aging. 2012. V. 33. № 1. P. 196 e129–140.

  8. Spitz D.R., Hauer-Jensen M. Ionizing radiation-induced responses: where free radical chemistry meets redox biology and medicine // Antioxidants & redox signaling. 2014. V. 20. № 9. P. 1407–1409.

  9. Kontush A. Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer’s disease // Free radical biology & medicine. 2001. V. 31. № 9. P. 1120–1131.

  10. Shaftel S.S., Kyrkanides S., Olschowka J.A., et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology // The Journal of clinical investigation. 2007. V. 117. № 6. P. 1595–1604.

  11. Meraz-Rios M.A., Toral-Rios D., Franco-Bocanegra D., et al. Inflammatory process in Alzheimer’s Disease // Front Integr Neurosci. 2013. V. 7. P. 59.

  12. Kokhan V.S., Mariasina S., Pikalov V.A., et al. Neurokinin-1 Receptor Antagonist Reverses Functional CNS Alteration Caused by Combined gamma-rays and Carbon Nuclei Irradiation // CNS & neurological disorders drug targets. 2022. V. 21. № 3. P. 278–289.

  13. Chen W., Abud E.A., Yeung S.T., et al. Increased tauopathy drives microglia-mediated clearance of beta-amyloid // Acta neuropathologica communications. 2016. V. 4. № 1. P. 63.

  14. Alves S., Churlaud G., Audrain M., et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice // Brain: a journal of neurology. 2017. V. 140. № 3. P. 826–842.

  15. Lyra E.S.N.M., Goncalves R.A., Pascoal T.A., et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease // Transl Psychiatry. 2021. V. 11. № 1. P. 251.

  16. Weston L.L., Jiang S., Chisholm D., et al. Interleukin-10 deficiency exacerbates inflammation-induced tau pathology // Journal of neuroinflammation. 2021. V. 18. № 1. P. 161.

  17. Kang M.H., Jin Y.H., Kim B.S. Effects of Keratinocyte-Derived Cytokine (CXCL-1) on the Development of Theiler’s Virus-Induced Demyelinating Disease // Front Cell Infect Microbiol. 2018. V. 8. P. 9.

  18. Jin X., Yamashita T. Microglia in central nervous system repair after injury // Journal of biochemistry. 2016. V. 159. № 5. P. 491–496.

  19. Parkhurst C.N., Yang G. Ninan I., et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor // Cell. 2013. V. 155. № 7. P. 1596–1609.

Дополнительные материалы отсутствуют.