Экология, 2023, № 4, стр. 245-260

Стохастические и детерминистические процессы в формировании таксономического, функционального и филогенетического разнообразия сообществ: обзор современных представлений

В. Д. Леонов a*

a Институт проблем экологии и эволюции им. А.Н. Северцова РАН
119071 Москва, Ленинский просп., 33, Россия

* E-mail: v.d.leonov@gmail.com

Поступила в редакцию 05.12.2022
После доработки 15.03.2023
Принята к публикации 21.03.2023

Аннотация

Оценка биологического разнообразия и процессов, которые его определяют, – важная составляющая экологических исследований и природоохранной деятельности. В обзоре перечислены основные обобщающие теории и изложена современная концепция механизмов формирования экологических сообществ. Дано представление о детерминистических (абиотическом и биотическом фильтрах среды) и стохастических (экологическом дрейфе, расселении, видообразовании) процессах, которые участвуют в формировании таксономического, функционального и филогенетического аспектов разнообразия. Приведены примеры воздействия тех или иных процессов (влияние отдельных факторов среды, биотических взаимодействий, ограничения расселения) на α- и β-компоненты каждого из аспектов биоразнообразия, что позволяет оценить вклад тех или иных процессов в формирование биоразнообразия изучаемых локальных сообществ.

Ключевые слова: биоразнообразие, экологическая ниша, нейтральная теория, метасообщество, региональный пул видов, расселение, фильтр среды, альфа (α)- и бета (β)-разнообразие

Список литературы

  1. Гиляров М.С., Винберг Г.Г., Чернов Ю.И. Экология – задачи и перспективы // Природа. 1977. № 5. С. 3.

  2. Courchamp F., Dunne J.A., Le Maho Y. et al. Fundamental ecology is fundamental // Trends Ecol. Evol. 2015. V. 30. № 1. P. 9–16. https://doi.org/10.1016/j.tree.2014.11.005

  3. Vellend M. Conceptual synthesis in community ecology // Q. Rev. Biol. 2010. V. 85. № 2. P. 183–206. https://doi.org/10.1086/652373

  4. Hinterman E., Moccia A., Baber S. et al. MarsGarden: Designing an ecosystem for a sustainable multiplanetary future // Acta Astronaut. 2022. V. 195. P. 445–455. https://doi.org/10.1016/j.actaastro.2022.03.011

  5. Wiens J.A., Stralberg D., Jongsomjit D. et al. Niches, models, and climate change: Assessing the assumptions and uncertainties // Proc. Natl. Acad. Sci. 2009. V. 106. P. 19729. https://doi.org/10.1073/pnas.0901639106

  6. Semenchuk P., Moser D., Essl F. et al. Future representation of species’ climatic niches in protected areas: A case study with Austrian endemics // Front. Ecol. Evol. 2021. V. 9:685753. https://doi.org/10.3389/fevo.2021.685753

  7. Arnan X., Angulo E., Boulay R. et al. Introduced ant species occupy empty climatic niches in Europe // Sci. Rep. 2021. V. 11. № 1. P. 3280. https://doi.org/10.1038/s41598-021-82982-y

  8. Clements F.E. Plant succession: An analysis of the development of vegetation. Washington: Carnegie Institution of Washington, 1916. 512 p.

  9. Elton C.S. Animal Ecology. New York: The Macmillan Company, 1927. 207 p.

  10. Gause G.F. The struggle for existence. Baltimore: The Williams & Wilkins Company, 1934. 163 p.

  11. Grinnell J. The niche-relationships of the California thrasher // The Auk. American Ornithological Society. 1917. V. 34. № 4. P. 427–433. https://doi.org/10.2307/4072271

  12. Hutchinson G.E. Concluding remarks. Population studies: Animal ecology and demography // Cold Spring Harbor Symposia on Quantative Biology. 1957. V. 22. P. 415–427.

  13. MacArthur R.H., Wilson E.O. The theory of island biogeography. Princeton, New Jersey: Princeton University Press, 1967. 203 p.

  14. Hubbell S. The unified neutral theory of biodiversity and biogeography. Princeton, Oxford: Princeton University Press, 2001. V. 32. 448 p.

  15. Vellend M. The theory of ecological communities (MPB-57). Princeton, Oxford: Princeton University Press, 2016. 248 p.

  16. Faith D.P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015. V. 370. № 1662. P. 20140011. https://doi.org/10.1098/rstb.2014.0011

  17. Mouchet M.A., Villéger S., Mason N.W.H. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules // Funct. Ecol. 2010. V. 24. № 4. P. 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x

  18. Jarzyna M.A., Jetz W. Detecting the multiple facets of biodiversity // Trends Ecol. Evol. 2016. V. 31. № 7. P. 527–538. https://doi.org/10.1016/j.tree.2016.04.002

  19. Arnan X., Cerda X., Retana J. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants // PEERJ. 2015. V. 3. https://doi.org/10.7717/peerj.1241

  20. Palmer M.W. Variation in species richness: Towards a unification of hypotheses // Folia Geobot. Phytotaxon. 1994. V. 29. № 4. P. 511–530. https://doi.org/10.1007/BF02883148

  21. Chase J.M., Leibold M.A. Ecological niches: Linking classical and contemporary approaches. Chicago, London: University of Chicago Press, 2009. 221 p. https://doi.org/10.7208/9780226101811

  22. Bell G. Neutral Macroecology // Science. 2001. V. 293. № 5539. P. 2413–2418. https://doi.org/10.1126/science.293.5539.2413

  23. Leibold M.A., Holyoak M., Mouquet N. et al. The metacommunity concept: A framework for multi-scale community ecology // Ecol. Lett. 2004. V. 7. № 7. P. 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

  24. Logue J.B., Mouquet N., Peter H. et al. Empirical approaches to metacommunities: A review and comparison with theory // Trends Ecol. Evol. 2011. V. 26. № 9. P. 482–491. https://doi.org/10.1016/j.tree.2011.04.009

  25. Anderson J.M. The enigma of soil animal species diversity // Progress in Soil Zoology: Proceedings of the 5th International Colloquium on Soil Zoology Held in Prague September 17–22, 1973. Dordrecht: Springer Netherlands, 1975. P. 51–58. https://doi.org/10.1007/978-94-010-1933-0_5

  26. Walter D.E., Proctor H.C. Mites: Ecology, Evolution and Behaviour. Wallingford - New York - Sydney: CABI Publishing, 2013. 494 p. https://doi.org/10.1007/978-94-007-7164-2_1

  27. Hubbell S.P. Neutral theory in community ecology and the hypothesis of functional equivalence // Funct. Ecol. 2005. V. 19. № 1. P. 166–172. https://doi.org/10.1111/j.0269-8463.2005.00965.x

  28. Гиляров А.М. В поисках универсальных закономерностей организации сообществ: прогресс на пути нейтрализма // Журнал общей биологии. 2010. Т.71. № 5. С. 386–401. EDN MUKAWP

  29. Zombie ideas in ecology: “neutral” = “stochastic” [Electronic resource] // Oikos Blog. 2012. URL: https://oikosjournal.wordpress.com/2012/01/23/-zombie-ideas-in-ecology-neutral-stochastic/ (accessed: 10.11.2022).

  30. Kraft N.J.B., Adler P.B., Godoy O. et al. Community assembly, coexistence and the environmental filtering metaphor // Funct. Ecol. 2015. V. 29. № 5. P. 592–599. https://doi.org/10.1111/1365-2435.12345

  31. Chase J.M., Myers J.A. Disentangling the importance of ecological niches from stochastic processes across scales // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011. V. 366. № 1576. P. 2351–2363. https://doi.org/10.1098/rstb.2011.0063

  32. Boet O., Arnan X., Retana J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale // PLOS ONE. 2020. V. 15. № 2. P. e0228625. https://doi.org/10.1371/journal.pone.0228625

  33. Cadotte M.W., Tucker C.M. Should environmental filtering be abandoned? // Trends Ecol. Evol. 2017. V. 32. № 6. P. 429–437. https://doi.org/10.1016/j.tree.2017.03.004

  34. Grime J.P., Pierce S. The evolutionary strategies that shape ecosystems. John Wiley & Sons, Ltd., 2012. 263 p.

  35. Weiher E., Keddy P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns // Oikos. 1995. V. 74. № 1. P. 159–164. https://doi.org/10.2307/3545686

  36. Questad E.J., Foster B.L. Coexistence through spatio-temporal heterogeneity and species sorting in grassland plant communities // Ecol. Lett. 2008. V. 11. № 7. P. 717–726. https://doi.org/10.1111/j.1461-0248.2008.01186.x

  37. Bauer B., Berti E., Ryser R. et al. Biotic filtering by species’ interactions constrains food-web variability across spatial and abiotic gradients // Ecol. Lett. 2022. V. 25. № 5. P. 1225–1236. https://doi.org/10.1111/ele.13995

  38. Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects // Annu. Rev. Ecol. Evol. Syst. 2015. V. 46. № 1. P. 1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

  39. Piculell B.J., Hoeksema J.D., Thompson J.N. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics // BMC Biol. 2008. V. 6. № 1. P. 11. https://doi.org/10.1186/1741-7007-6-23

  40. Callaway R.M., Brooker R.W., Choler P. et al. Positive interactions among alpine plants increase with stress // Nature. 2002. V. 417. № 6891. P. 844–848. https://doi.org/10.1038/nature00812

  41. Callaway R.M. Positive interactions and interdependence in plant communities. Dordrecht: Springer, 2007. 404 p.

  42. Arnan X., Andersen A.N., Gibb H. et al. Dominance–diversity relationships in ant communities differ with invasion // Glob. Change Biol. 2018. V. 24. № 10. P. 4614–4625. https://doi.org/10.1111/gcb.14331

  43. Noble D. The role of stochasticity in biological communication processes // Prog. Biophys. Mol. Biol. 2021. V. 162. P. 122–128. https://doi.org/10.1016/j.pbiomolbio.2020.09.008

  44. Vandvik V., Goldberg D.E. Distinguishing the roles of dispersal in diversity maintenance and in diversity limitation // Folia Geobot. 2005. V. 40. № 1. P. 45–52. https://doi.org/10.1007/BF02803043

  45. Lowe W.H., McPeek M.A. Is dispersal neutral? // Trends Ecol. Evol. 2014. V. 29. № 8. P. 444–450. https://doi.org/10.1016/j.tree.2014.05.009

  46. Heinrichs J.A., Lawler J.J., Schumaker N.H. Intrinsic and extrinsic drivers of source˗sink dynamics // Ecol. Evol. 2016. V. 6. № 4. P. 892–904. https://doi.org/10.1002/ece3.2029

  47. Mouquet N., Loreau M. Community patterns in source-sink metacommunities // Amer. Nat. 2003. V. 162. № 5. P. 544–557. https://doi.org/10.1086/378857

  48. Melbourne B.A., Hastings A. Extinction risk depends strongly on factors contributing to stochasticity // Nature. 2008. V. 454. № 7200. P. 100–103. https://doi.org/10.1038/nature06922

  49. Legendre S., Clobert J., Møller A.P. et al. Demographic stochasticity and social mating system in the process of extinction of small populations: The case of passerines introduced to New Zealand // Amer. Nat. 1999. V. 153. № 5. P. 449–463. https://doi.org/10.1086/303195

  50. Lehmann L., Perrin N. On metapopulation resistance to drift and extinction // Ecology. 2006. V. 87. № 7. P. 1844–1855. https://doi.org/10.1890/0012-9658(2006)87[1844:-OMRTDA]2.0.CO;2

  51. Gilbert B., Levine J.M. Ecological drift and the distribution of species diversity // Proc. R. Soc. B Biol. Sci. 2017. V. 284. № 1855. P. 20170507. https://doi.org/10.1098/rspb.2017.0507

  52. Vellend M., Srivastava D.S., Anderson K.M. et al. Assessing the relative importance of neutral stochasticity in ecological communities // Oikos. 2014. V. 123. № 12. P. 1420–1430. https://doi.org/10.1111/oik.01493

  53. Gan H., Zak D.R., Hunter M.D. Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities // Pedobiologia. 2019. V. 74. P. 43–53. https://doi.org/10.1016/j.pedobi.2019.03.002

  54. Lambers H., Oliveira R.S. Plant physiological ecology. Cham: Springer International Publishing, 2019. 736 p. https://doi.org/10.1007/978-3-030-29639-1

  55. Götzenberger L., de Bello F., Bråthen K.A. et al. Ecological assembly rules in plant communities – approaches, patterns and prospects // Biol. Rev. 2012. V. 87. № 1. P. 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x

  56. Cione A.L., Gasparini G.M., Soibelzon E. et al. The great american biotic interchange: A south american perspective. Dordrecht: Springer, 2015. 97 p.

  57. Ebach M.C. Handbook of Australasian biogeography. Boca Raton: CRC Press, 2017. 404 p.

  58. Cornell H.V., Harrison S.P. What are species pools and when are they important? // Annu. Rev. Ecol. Evol. Syst. 2014. V. 45. № 1. P. 45–67. https://doi.org/10.1146/annurev-ecolsys-120213-091759

  59. Ron R., Fragman-Sapir O., Kadmon R. Dispersal increases ecological selection by increasing effective community size // Proc. Natl. Acad. Sci. 2018. V. 115. № 44. P. 11280–11285. https://doi.org/10.1073/pnas.1812511115

  60. Gallien L., Zimmermann N.E., Levine J.M. et al. The effects of intransitive competition on coexistence // Ecol. Lett. 2017. V. 20. № 7. P. 791–800. https://doi.org/10.1111/ele.12775

  61. Henriksson A., Wardle D.A., Trygg J. et al. Strong invaders are strong defenders – implications for the resistance of invaded communities // Ecol. Lett. 2016. V. 19. № 4. P. 487–494. https://doi.org/10.1111/ele.12586

  62. Swenson N.G., Enquist B.J., Pither J. et al. The problem and promise of scale dependency in community phylogenetics. // Ecology. 2006. V. 87. № 10. P. 2418–2424. https://doi.org/10.1890/0012-9658(2006)87[2418:-tpapos]2.0.co;2

  63. Wisz M.S., Pottier J., Kissling W.D. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling // Biol. Rev. 2013. V. 88. № 1. P. 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

  64. Chase J.M. Stochastic community assembly causes higher biodiversity in more productive environments // Science. 2010. V. 328. № 5984. P. 1388–1391. https://doi.org/10.1126/science.1187820

  65. Mahon M.B., Penn H.J., Campbell K.U. et al. Differential patterns of taxonomic and functional diversity for two groups of canopy arthropods across spatial scales // bioRxiv. 2022. P. 2022.08.03.502641. https://doi.org/10.1101/2022.08.03.502641

  66. Måren I.E., Kapfer J., Aarrestad P.A. et al. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient // Ecology. 2018. V. 99. P. 148–157. https://doi.org/10.1002/ecy.2052

  67. Fox J. Book review: The theory of ecological communities by Mark Vellend [Electronic resource] // Dynamic Ecology. 2016. URL: https://dynamicecology.wordpress.com/2016/12/19/book-review-the-theory-of-ecological-communities-by-mark-vellend/ (accessed: 09.11.2022).

  68. Hooper D.U., Chapin III F.S., Ewel J.J. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge // Ecol. Monogr. 2005. V. 75. № 1. P. 3–35. https://doi.org/10.1890/04-0922

  69. Webb C.O., Ackerly D.D., McPeek M.A. et al. Phylogenies and community ecology // Annu. Rev. Ecol. Syst. 2002. V. 33. № 1. P. 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.-150448

  70. Meynard C.N., Devictor V., Mouillot D. et al. Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? // Glob. Ecol. Biogeogr. 2011. V. 20. № 6. P. 893–903. https://doi.org/10.1111/j.1466-8238.2010.00647.x

  71. de Bello F., Carmona C.P., Dias A.T.C. et al. Handbook of trait-based ecology: From theory to R tools. Cambridge: Cambridge University Press, 2021. 308 p. https://doi.org/10.1017/9781108628426

  72. Violle C., Navas M.L., Vile D. et al. Let the concept of trait be functional! // Oikos. 2007. V. 116. № 5. P. 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

  73. Mazel F., Thuiller W. Functional and phylogenetic diversity˗area relationships // The species˗area relationship: Theory and application / Eds. Triantis K.A., Whittaker R.J., Matthews T.J. Cambridge: Cambridge University Press, 2021. P. 107–132. https://doi.org/10.1017/9781108569422.009

  74. Naeem S. Species redundancy and ecosystem reliability // Conserv. Biol. 1998. V. 12. № 1. P. 39–45. https://doi.org/10.1111/j.1523-1739.1998.96379.x

  75. Biggs C.R., Yeager L.A., Bolser D.G. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis // Ecosphere. 2020. V. 11. № 7. P. e03184. https://doi.org/10.1002/ecs2.3184

  76. Owen N.R., Gumbs R., Gray C.L. et al. Global conservation of phylogenetic diversity captures more than just functional diversity // Nat. Commun. 2019. V. 10. № 1. P. 859. https://doi.org/10.1038/s41467-019-08600-8

  77. Faith D.P. Conservation evaluation and phylogenetic diversity // Biol. Conserv. 1992. V. 61. № 1. P. 1–10. https://doi.org/10.1016/0006-3207(92)91201-3

  78. Головатюк Л.В., Шитиков В.К., Зинченко Т.Д. Анализ связи филогенетического разнообразия донных сообществ с минерализацией равнинных рек бассейна Нижней Волги // Экология. 2022. № 2. С. 129–139. https://doi.org/10.31857/S0367059722010048

  79. Blomberg S.P., Garland Jr T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods // J. Evol. Biol. 2002. V. 15. № 6. P. 899–910. https://doi.org/10.1046/j.1420-9101.2002.00472.x

  80. Potapov A.M., Scheu S., Tiunov A.V. Trophic consistency of supraspecific taxa in below-ground invertebrate communities: Comparison across lineages and taxonomic ranks // Funct. Ecol. 2019. V. 33. № 6. P. 1172–1183. https://doi.org/10.1111/1365-2435.13309

  81. Cadotte M.W., Cavender-Bares J., Tilman D. et al. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity // PLOS ONE. 2009. V. 4. № 5. P. e5695. https://doi.org/10.1371/journal.pone.0005695

  82. Gerhold P., Cahill J.F., Jr. Winter M. et al. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better) // Funct. Ecol. 2015. V. 29. № 5. P. 600–614. https://doi.org/10.1111/1365-2435.12425

  83. Devictor V., Mouillot D., Meynard C. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world // Ecol. Lett. 2010. V. 13. № 8. P. 1030–1040. https://doi.org/10.1111/j.1461-0248.2010.01493.x

  84. Prinzing A., Reiffers R., Braakhekke W.G. et al. Less lineages – more trait variation: phylogenetically clustered plant communities are functionally more diverse // Ecol. Lett. 2008. V. 11. № 8. P. 809–819. https://doi.org/10.1111/j.1461-0248.2008.01189.x

  85. Faith D.P., Richards Z.T. Climate change impacts on the tree of life: Changes in phylogenetic diversity illustrated for Acropora corals // Biology. 2012. V. 1. № 3. P. 906–932. https://doi.org/10.3390/biology1030906

  86. Cadotte M.W., Dinnage R., Tilman D. Phylogenetic diversity promotes ecosystem stability // Ecology. 2012. V. 93. № sp8. P. S223–S233. https://doi.org/10.1890/11-0426.1

  87. Bełcik M., Lenda M., Amano T. et al. Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation // Sci. Rep. 2020. V. 10. № 1. P. 20320. https://doi.org/10.1038/s41598-020-76917-2

  88. Purschke O., Schmid B.C., Sykes M.T. et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes // J. Ecol. 2013. V. 101. № 4. P. 857–866. https://doi.org/10.1111/1365-2745.12098

  89. Hupperts S.F., Webster C.R., Froese R.E. et al. Increasing ground-layer plant taxonomic diversity masks declining phylogenetic diversity along a silvicultural disturbance gradient // Can. J. For. Res. 2020. V. 50. P. 1259–1267.https://doi.org/10.1139/cjfr-2020-0055

  90. Pavoine S., Bonsall M.B. Measuring biodiversity to explain community assembly: a unified approach // Biol. Rev. 2011. V. 86. № 4. P. 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.x

  91. Ricotta C., Szeidl L. Diversity partitioning of Rao’s quadratic entropy // Theor. Popul. Biol. 2009. V. 76. № 4. P. 299–302. https://doi.org/10.1016/j.tpb.2009.10.001

  92. Jones H.P., Barber N.A., Gibson D.J. Is phylogenetic and functional trait diversity a driver or a consequence of grassland community assembly? // J. Ecol. 2019. V. 107. № 5. P. 2027–2032. https://doi.org/10.1111/1365-2745.13260

  93. Dambros C., Zuquim G., Moulatlet G.M. et al. The role of environmental filtering, geographic distance and dispersal barriers in shaping the turnover of plant and animal species in Amazonia // Biodivers. Conserv. 2020. V. 29. № 13. P. 3609–3634. https://doi.org/10.1007/s10531-020-02040-3

  94. Pagel M. Inferring the historical patterns of biological evolution // Nature. 1999. V. 401. № 6756. P. 877–884. https://doi.org/10.1038/44766

  95. Jones M.M., Tuomisto H., Borcard D. et al. Explaining variation in tropical plant community composition: influence of environmental and spatial data quality // Oecologia. 2008. V. 155. № 3. P. 593–604. https://doi.org/10.1007/s00442-007-0923-8

  96. Emerson B.C., Gillespie R.G. Phylogenetic analysis of community assembly and structure over space and time // Trends Ecol. Evol. 2008. V. 23. № 11. P. 619–630. https://doi.org/10.1016/j.tree.2008.07.005

  97. Losos J.B., Jackman T.R., Larson A. et al. Contingency and determinism in replicated adaptive radiations of island lizards // Science. 1998. V. 279. № 5359. P. 2115–2118. https://doi.org/10.1126/science.279.5359.2115

  98. Barajas-Barbosa M.P., Craven D., Weigelt P. et al. Assembly of functional diversity in an oceanic island flora // bioRxiv. 2022. P. 2022.03.04.482684. https://doi.org/10.1101/2022.03.04.482684

  99. Weigelt P., Daniel Kissling W., Kisel Y. et al. Global patterns and drivers of phylogenetic structure in island floras // Sci. Rep. 2015. V. 5. № 1. P. 12213. https://doi.org/10.1038/srep12213

  100. McGlinn D.J., Xiao X., Kitzes J. et al. Exploring the spatially explicit predictions of the Maximum Entropy Theory of Ecology // Glob. Ecol. Biogeogr. 2015. V. 24. № 6. P. 675–684. https://doi.org/10.1111/geb.12295

  101. Harte J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press, 2011. 264 p. https://doi.org/10.1093/acprof:oso/9780199593415.-001.0001

  102. Harte J., Newman E.A., Rominger A.J. Metabolic partitioning across individuals in ecological communities // Glob. Ecol. Biogeogr. 2017. V. 26. № 9. P. 993–997. https://doi.org/10.1111/geb.12621

  103. Harte J., Zillio T., Conlisk E. et al. Maximum entropy and the state-variable approach to macroecology // Ecology. 2008. V. 89. № 10. P. 2700–2711. https://doi.org/10.1890/07-1369.1

  104. Harte J., Smith A.B., Storch D. Biodiversity scales from plots to biomes with a universal species – area curve // Ecol. Lett. 2009. V. 12. № 8. P. 789–797. https://doi.org/10.1111/j.1461-0248.2009.01328.x

  105. Harte J., Umemura K., Brush M. DynaMETE: a hybrid MaxEnt-plus-mechanism theory of dynamic macroecology // Ecol. Lett. 2021. V. 24. № 5. P. 935–949. https://doi.org/10.1111/ele.13714

  106. Weiher E., Freund D., Bunton T. et al. Advances, challenges and a developing synthesis of ecological community assembly theory // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011. V. 366. № 1576. P. 2403–2413. https://doi.org/10.1098/rstb.2011.0056

  107. Le Bagousse-Pinguet Y., Gross N., Maestre F.T. et al. Testing the environmental filtering concept in global drylands // J. Ecol. 2017. V. 105. № 4. P. 1058–1069. https://doi.org/10.1111/1365-2745.12735

  108. Thakur M.P., Phillips H.R.P., Brose U. et al. Towards an integrative understanding of soil biodiversity // Biol. Rev. 2020. V. 95. № 2. P. 350–364. https://doi.org/10.1111/brv.12567

Дополнительные материалы отсутствуют.