Физика и химия стекла, 2023, T. 49, № 6, стр. 619-631

Спектральные свойства наноструктурированных композиционных стекломатериалов, активированных иттрием в присутствии меди либо висмута

М. А. Гирсова 1*, Г. Ф. Головина 1, Л. Н. Куриленко 1, И. Н. Анфимова 1

1 Институт химии силикатов им. И.В. Гребенщикова РАН
199034 Санкт-Петербург, наб. Макарова, 2, Россия

* E-mail: girsovama@yandex.ru

Поступила в редакцию 19.07.2023
После доработки 02.08.2023
Принята к публикации 07.08.2023

Аннотация

Синтезированы композиционные материалы (КМ) на основе матриц из пористых стекол, активированные иттрием в присутствии меди либо висмута. Установлено, что образцы КМ в зависимости от состава обладают УФ, сине-зеленой, красной и инфракрасной люминесценцией, обусловленной присутствием различных центров, в том числе Bi3+ и Cu+ ионов, F центров в Y2O3, молекулярных ионов ${\text{O}}_{3}^{{ - 2}},$ ассоциированных с катионными вакансиями Y3+.

Ключевые слова: композиционные материалы, пористое стекло, висмут, медь, иттрий, оптическая спектроскопия, инфракрасная спектроскопия, энергодисперсионная рентгеновская спектроскопия, люминесценция

Список литературы

  1. Hashim A., Hadi A. Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application // Sensor Letters. 2017. V. 15. № 10. P. 858–861. https://doi.org/10.1166/sl.2017.3900

  2. El-Sayed F., Ganesh V., Hussien M.S.A., AlAbdulaal T.H., Zahran H.Y., Yahia I.S., Abdel-wahab M.Sh., Shakir M., Bitla Y. Facile synthesis of Y2O3/CuO nanocomposites for photodegradation of dyes/mixed dyes under UV- and visible light irradiation // Journal of Materials Research and Technology. 2022. V. 19. P. 4867–4880. https://doi.org/10.1016/j.jmrt.2022.06.163

  3. Marappa B., Pattar V., Rudresha M.S. Investigations of structural, optical and electrical properties of Cu2+ doped Y2O3 nanosheets // Chemical Physics Letters. 2019. V. 728. P. 67–61.

  4. Chen C., Jia N., Song K., Zheng X., Lan Y., Li Y. Sulfur-doped copper-yttrium bimetallic oxides: A novel and efficient ozonation catalyst for the degradation of aniline // Separation and Purification Technology. 2020. V. 236. P. 116248. https://doi.org/10.1016/j.seppur.2019.116248

  5. Baulin O., Douillard T., Fabrègue D., Perez M., Pelletier J.-M., Bugnet M. Three-dimensional structure and formation mechanisms of Y2O3 hollow-precipitates in a Cu-based metallic glass // Materials & Design. 2019. V. 168. P. 107 660. https://doi.org/10.1016/j.matdes.2019.107660

  6. Dai N., Wang Y., Xu B., Yang L., Luan H., Li J. Effect of yttrium oxide addition on absorption and emission properties of bismuth-doped silicate glasses // Journal of Rare Earths. 2012. V. 30. N 5. P. 418–421.

  7. Feng Z., Lou B., Yin M., Yeung Y., Sun H.-T., Duan C.-K. First-Principles Study of Bi3+-Related Luminescence and Electron and Hole Traps in (Y/Lu/La)PO4 // Inorganic Chemistry. 2021. V. 60. № 7. P. 4434–4446. https://doi.org/10.1021/acs.inorgchem.0c03217

  8. Krasnikov A., Mihokova E., Nikl M., Zazubovich S., Zhydachevskyy Y. Luminescence Spectroscopy and Origin of Luminescence Centers in Bi-Doped Materials // Crystals. 2020. V. 10. № 3. P. 208. https://doi.org/10.3390/cryst10030208

  9. Scarangella A., Fabbri F., Reitano R., Rossi F., Priolo F., Miritello M. Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications // Scientific Reports. 2017. V. 7. P. 17325. https://doi.org/10.1038/s41598-017-17567-9

  10. Hughes M.A., McMaster R., Proctor J.E., Hewak D.W., Suzuki T., Ohishi Y. High pressure photoluminescence of bismuth-doped yttria-alumina-silica glass // High Pressure Research. 2022. V. 42. № 1. P. 94–104. https://doi.org/10.1080/08957959.2022.2044031

  11. Li Q., Zhang B., Wei Z., He M., Wang H., Wei Z., Shi Z. Effect of Bi3+ ion Concentration on Crystal Structure and Luminescent Properties of Blue-Green-Emitting Y2O3: Bi3+ Phosphors // Functional Materials Letters. 2020. V. 13. № 7. P. 2050036. https://doi.org/10.1142/s1793604720500368

  12. Singh O.S., Wangkhem R., Singh N.S. Excitation and activator concentration induced color tuning and white light generation from Bi3+ sensitized Y2O3:Eu3+: Energy transfer studies // Journal of Alloys and Compounds. 2021. V. 875. P. 160059. https://doi.org/10.1016/j.jallcom.2021.160059

  13. Jafer R.M., Swart H.C., Yousif A., Kumar V., Coetsee E. The effect of annealing temperature on the luminescence properties of Y2O3 phosphor powders doped with a high concentration of Bi3+ // Journal of Luminescence. 2016. V. 180. P. 198–203. https://doi.org/10.1016/j.jlumin.2016.08.042

  14. Yousif A., Kumar V., Jafer R.M., Swart H.C. The effect of different annealing temperatures on the structure and luminescence properties of Y2O3: Bi3+ thin film fabricated by RF magnetron sputtering // Applied Surface Science. 2017. V. 424. P. 407–411. https://doi.org/10.1016/j.apsusc.2017.01.001

  15. Korsunska N., Baran M., Poslishchuk Y., Kolomys, O., Stara T., Kharchenko M., Gorban O., Strelchuk V., Venger Ye., Kladko V., Khomenkova L. Structural and Luminescent Properties of (Y,Cu)-Codoped Zirconia Nanopowders // ECS Journal of Solid State Science and Technology. 2015. Vol. 4. № 9. P. N103–N110. https://doi.org/10.1149/2.0021509jss

  16. Antropova T., Girsova M., Anfimova I., Drozdova I., Polyakova I., Vedishcheva N. Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides // J. Non-Cryst. Solids. 2014. V. 401. P. 139–141.

  17. Патент 2605711. Способ изготовления люминесцентного висмут-содержащего кварцоидного материала на основе высококремнеземного пористого стекла / Антропова Т.В., Гирсова М.А., Анфимова И.Н., Головина Г.Ф., Куриленко Л.Н., Фирстов С.В.; заявитель и патентообладатель Институт химии силикатов им. И.В. Гребенщикова. – № 2015117713/05; заявл. 12.05.2015; опубл. 27.12.2016, Бюл. № 36. – 17 с.

  18. Гирсова М.А., Головина Г.Ф., Анфимова И.Н., Куриленко Л.Н., Антропова Т.В. Влияние соотношения Bi/Y на спектральные свойства висмутсодержащих композиционных материалов на основе силикатных пористых стекол // Физика и химия стекла. 2022. Т. 48. № 5. С. 555–567. https://doi.org/10.31857/S0132665122600145

  19. Гирсова М.А., Головина Г.Ф., Куриленко Л.Н. Инфракрасная спектроскопия композиционных материалов на основе высококремнеземных пористых стекол, активированных ионами висмута и иттрия // Физика и химия стекла. 2022. Т. 48. № 6. С. 746–752. https://doi.org/10.31857/S0132665122600418

  20. Husung R.D., Doremus R.H. The infrared transmission spectra of four silicate glasses before and after exposure to water // Journal of Materials Research. 1990. V. 5. № 10. P. 2209–2217.

  21. Reddy D.V.K., Taherunnisa Sk., Prasanna A.L., Rao T.S., Veeraiah N., Reddy M.R. Enhancement of the red emission of Eu3+ by Bi3+ sensitizers in yttrium alumino bismuth borosilicate glasses // Journal of Molecular Structure. 2019. V. 1176. P. 133–148.

  22. Hammad A.H., Abdelghany A.M., ElBatal H.A. Thermal, Structural, and Morphological Investigations of Modified Bismuth Silicate Glass-Ceramics // Silicon. 2017. V. 9. P. 239–248.

  23. Kundu R.S., Dult M., Punia R., Parmar R., Kishore N. Titanium induced structural modifications in bismuth silicate glasses // Journal of Molecular Structure. 2014. V. 1063. P. 77–82.

  24. Fuss T., Moguš-Milanković A., Ray C.S., Lesher C.E., Youngman R., Day D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure // Journal of Non-Crystalline Solids. 2006. V. 352. P. 4101–4111.

  25. Kumar G.R., Srikumar T., Krishna G.M., Baskaran G.S., Reddy A.S.S., Kumar V.R., Rao Ch.S. The role of Ni2+ ions on structural and spectroscopic properties of Li2O–ZrO2 –Y2O3–SiO2 glass system // Journal of Non-Crystalline Solids. 2018. V. 498. P. 372–379. https://doi.org/10.1016/j.jnoncrysol.2018.03.025

  26. Borgohain K., Singh J.B., Rao M.V.R., Shripathi T., Mahamuni S. Quantum size effects in CuO nanoparticles // Physical Review B. 2000. V. 61. № 16. P. 11093–11096. https://doi.org/10.1103/physrevb.61.11093

  27. Romo F.C., Murillo A.G., Torres D.L., Castro N.C., Romero V.H., de la Rosa E., Febles V. G., Hernández M.G. Structural and luminescence characterization of silica coated Y2O3:Eu3+ nanopowders // Opt. Mater. 2010. V. 32. P. 1471–1479.

  28. Haritha A.H., Rao R.R. Sol-Gel synthesis and phase evolution studies of yttrium silicates // Ceramics International. 2019. V. 45. P. 24957–24964. https://doi.org/10.1016/j.ceramint.2019.03.157

  29. Luna-López J.A., Carrillo-López J., Aceves-Mijares M., Morales-Sánchez A., Falcony C. FTIR and photoluminescence of annealed silicon rich oxide films // Superficies y Vacío. 2009. V. 22. № 1. P. 11–14.

  30. Ananthamohan C., Hogarth C.A., Theocharis C.R., Yeates D. Investigation of infrared absorption spectra of copper phosphate glasses containing some rare earth oxides // Journal of Materials Science. 1990. V. 25. P. 3956–3959. https://doi.org/10.1007/bf00582466

  31. Shanmugapriya T., Balavijayalakshmi J. Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dye-sensitized solar cell applications // Asia-Pacific Journal of Chemical Engineering. 2021. V. 16. № 2. P. e2598. https://doi.org/10.1002/apj.2598

  32. Stefan R., Culea E., Pascuta P. The effect of copper ions addition on structural and optical properties of zinc borate glasses // Journal of Non-Crystalline Solids. 2012. V. 358. № 4. P. 839–846. https://doi.org/10.1016/j.jnoncrysol.2011.12.079

  33. Sable P., Thabet N., Yaseen J., Dharne G. Effects on Structural Morphological and Optical Properties Pure and CuO/ZnO Nanocomposite // Trends in Science. 2022. V. 19. № 24. P. 3092/1–3092/10. https://doi.org/10.48048/tis.2022.3092

  34. Khlifi N., Mnif S., Nasr F.B., Fourati N., Zerrouki C., Chehimi M.M., Guermazi H., Aifa S., Guermazi S. Non-doped and transition metal-doped CuO nanopowders: structure-physical properties and antiadhesion activity relationship // RSC Advances. 2022. V. 12. P. 23527–23543. https://doi.org/10.1039/d2ra02433k

  35. Rachna, Aghamkar P. Morphological and optical investigation of Y2O3:SiO2 powder by wet chemical process // Optical Materials. 2013. V. 36. № 2. P. 337–341. https://doi.org/10.1016/j.optmat.2013.09.019

  36. Liu T., Xu W., Bai X., Song H. Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+@SiO2 nanocomposites // Journal of Applied Physics. 2012. V. 111. № 6. P. 064312. https://doi.org/10.1063/1.3694767

  37. Iordanescu C.R., Tenciu D., Feraru I.D., Kiss A., Bercu M., Savastru D., Notonier R., Grigorescu C.E.A. Structure and morphology of Cu-oxides films derived from PLD processes // Digest Journal of Nanomaterials and Biostructures. 2011. V. 6. № 2. P. 863–868.

  38. Aghazadeh M., Ghaemi M., Golikand A.N., Yousefi T., Jangju E. Yttrium Oxide Nanoparticles Prepared by Heat Treatment of Cathodically Grown Yttrium Hydroxide // International Scholarly Research Notices. 2011. V. 2011. P. 542 104/1–54 2104/6. https://doi.org/10.5402/2011/542104

  39. Gavrilko T., Gnatyuk I., Puchkovska G., Baran J., Marchewka M., Morawska-Kowal T. Application of NIR spectroscopic method to the study of porous glasses filled with liquid crystals // Optica Applicata. 2003. V. 33. № 1. P. 23–32.

  40. Davis K.M., Tomozawa M. An infrared spectroscopic study of water-related species in silica glasses // Journal of Non-Crystalline Solids. 1996. V. 201. P. 177–198.

  41. Humbach O., Fabian H., Grzesik U., Haken U., Heitmann W. Analysis of OH absorption bands in synthetic silica // Journal of Non-Crystalline Solids. 1996. V. 203. P. 19–26.

  42. Никитин В.А., Сидоров А.Н., Карякин А.В. Исследование адсорбции обычной и тяжелой воды на микропоистом стекле по инфракрасным спектрам поглощения // Журн. физической химии. 1956. Т. 30. Вып. 1. С. 117–128.

  43. Nigara Y. Measurement of the Optical Constants of Yttrium Oxide // Japanese Journal of Applied Physics. 1968. V. 7. № 4. P. 404–408.

  44. Peng M., Zollfrank C., Wondraczek L. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature // J. Phys.: Condens. Matter. 2009. V. 21, article 285106. P. 1–6.

  45. Plotnichenko V.G., Philippovskiy D.V., Sokolov V.O., Golovanov V.F., Polyakova G.V., Lisitsky I.S., Dianov E.M. Infrared luminescence in bismuth-doped AgCl crystals // Optics Letters. 2013. V. 38. № 16. P. 2965–2968.

  46. Bae B.-S., Weinberg M.C. Optical absorption of copper phosphate glasses in the visible spectrum // Journal of Non-Crystalline Solids. 1994. V. 168. № 3. P. 223–231. https://doi.org/10.1016/0022-3093(94)90333-6

  47. Zotov N., Keppler H. The influence of water on the structure of hydrous sodium tetrasilicate glasses // American Mineralogist. 1998. V. 83. № 7–8. P. 823–834.

  48. Sokolov V.O., Plotnichenko V.G., Dianov E.M. Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals // Optics Express. 2013. V. 21. № 8. P. 9324–9332.

  49. Соломонов В.И., Осипов В.В., Шитов В.А., Лукьяшин К.Е., Бубнова А.С. Собственные центры люминесценции керамических иттрий-алюминиевого граната и оксида иттрия // Оптика и спектроскопия. 2020. Т. 128. Вып. 1. С. 5–9. https://doi.org/10.21883/OS.2020.01.48831.117-19

  50. Осипов В.В., Расулева А.В., Соломонов В.И. Люминесценция оксида иттрия // Оптика и спектроскопия. 2008. Т. 105. № 4. С. 578–584.

  51. Boutinaud P. On the luminescence of Bi3+ pairs in oxidic compounds // Journal of Luminescence. 2018. V. 197. P. 228–232. https://doi.org/10.1016/j.jlumin.2018.01.052

  52. Boutinaud P. Revisiting the Spectroscopy of the Bi3+ Ion in Oxide Compounds // Inorganic Chemistry. 2013. Vol. 52. P. 6028–6038. https://doi.org/10.1021/ic400382k

  53. Zhou S., Jiang N., Zhu B., Yang H., Ye S., Lakshminarayana G., Hao J., Qiu J. Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers // Advanced Functional Materials. 2008. V. 18. № 9. P. 1407–1413.

  54. Krishnan M.L., Neethish M.M., Kumar V.V.R.K. Structural and optical studies of rare earth-free bismuth silicate glasses for white light generation // Journal of Luminescence. 2018. V. 201. P. 442–450.

  55. Dan H.K., Phan A.-L., Ty N.M., Zhou D., Qiu J. Optical bandgaps and visible/near-infrared emissions of Bin+-doped (n = 1, 2, and 3) fluoroaluminosilicate glasses via Ag+-K+ ions exchange process // Optical Materials. 2021. Vol. 112. P. 110762/1–110762/8.

  56. Swart H.C., Kroon R.E. Ultraviolet and visible luminescence from bismuth doped materials // Optical Materials: X. 2019. V. 2. P. 100025. https://doi.org/10.1016/j.omx.2019.100025

  57. Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide // Journal of Non-Crystalline Solids. 1998. V. 239. № 1–3. P. 16–48. https://doi.org/10.1016/s0022-3093(98)00720-0

  58. Зацепин А.Ф. Статика и динамика возбужденных состояний кислородно-дефицитных центров в SiO2 // Физика твердого тела. 2010. Т. 52. Вып. 6. С. 1104–1114. [Zatsepin A.F. Statics and dynamics of excited states of oxygen-deficient centers in SiO2 // Physics of the Solid State. 2010. V. 52. № 6. P. 1176–1187. DOI: 10.1134/s1063783410060107].

  59. Hamzaoui H.El., Ouerdane Y., Bigot L., Bouwmans G., Capoen B., Boukenter A., Girard S., Bouazaoui M. Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter // Optics Express. 2012. V. 20. № 28. P. 29751–29760. https://doi.org/10.1364/oe.20.029751

  60. Borsella E., Vecchio A.D., Garcìa M.A., Sada C., Gonella F., Polloni R., Quaranta A., van Wilderen L.J.G.W. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study // Journal of Applied Physics. 2002. V. 91. № 1. P. 90–98. https://doi.org/10.1063/1.1421241

  61. Švecová B., Vařák P., Vytykáčová S., Nekvindová P., Macková A., Malinský P., Böttger R. A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2017. V. 406. Part A. P. 193–198. https://doi.org/10.1016/j.nimb.2017.03.042

Дополнительные материалы отсутствуют.