Физика металлов и металловедение, 2023, T. 124, № 5, стр. 384-391

Исследование структурных и энергетических свойств границ (210) и (130) в железе и сплаве Fe–Cr

Р. М. Мефтахутдинов a, М. Ю. Тихончев a, Д. А. Евсеев a*

a Ульяновский государственный университет
432017 Ульяновск, ул. Л. Толстого, 42, Россия

* E-mail: comrade-dmitriy@mail.ru

Поступила в редакцию 30.01.2023
После доработки 13.03.2023
Принята к публикации 15.03.2023

Аннотация

Методами из первых принципов и методом молекулярной статистики исследованы структура и энергетические свойства симметричных наклонных границ Σ5 (130)[001] и Σ5 (210)[001] в железе и сплавах Fe–Cr малой концентрации. Показано, что граница сильно изменяет межплоскостные расстояния. Последовательность многослойной релаксации носит характер затухающих колебаний, постепенно уменьшаясь вглубь зерен. Энергия замещения железа атомами хрома возле границ ниже, чем в чистом железе. Наши расчеты указывают на тенденцию к накоплению атомов Cr и вакансий вблизи границ зерен.

Ключевые слова: граница зерна, сегрегация, точечные дефекты, расчеты из первых принципов, молекулярная статика

Список литературы

  1. Krasko G.L., Olson G.B. Effect of boron, carbon, phosphorus and sulphur on intergranular cohesion in iron // Solid State Comm. 1990. V. 76. P. 247–251.

  2. Zhang Y., Feng W.-Q., Liu Y.-L., Lu G.-H., Wang T. First-principles study of helium effect in a ferromagnetic iron grain boundary: Energetics, site preference and segregation // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009. V. 267(18). P. 3200−3203.

  3. He B., Xiao W., Hao W., Tian Z. First-principles investigation into the effect of Cr on the segregation of multi-h at the Fe Σ3 (111) grain boundary // J. Nucl. Mater. 2013. V. 441. P. 301−305.

  4. Čak M., Šob M., Hafner J. First-principles study of magnetism at grain boundaries in iron and nickel // Phys. Rev. B. 2008. V. 78(5).

  5. Xu Z., Tanaka S., Kohyama M. Grain-boundary segregation of 3d-transition metal solutes in bcc fe: ab initio local-energy and d-electron behavior analysis // J. Phys.: Condensed Matter. 2019. V. 31. P. 115001.

  6. Mai H.L., Cui X.-Y., Scheiber D., Romaner L., Ringer S. The segregation of transition metals to iron grain boundaries and their effects on cohesion // Acta Mater. 2022. V. 231. P. 117902.

  7. Tikhonchev M., Muralev A., Svetukhin V. MD simulation of atomic displacement cascades in random Fe–9 at % Cr binary alloy with twin grain boundaries // Fusion Sci. Techn. 2014. V. 66. P. 91–99.

  8. Caro A., Crowson D.A., Caro M. Classical Many-Body Potential for Concentrated Alloys and the Inversion of Order in Iron-Chromium Alloys // Phys. Rev. Letters. 2005. V. 95. P. 075702.

  9. Zhang J., Liu W., Chen P., He H., He C., Yun D. Molecular dynamics study of the interaction between symmetric tilt Σ5(210) [001] grain boundary and radiation-induced point defects in Fe–9Cr alloy // Nuclear Inst. and Methods in Physics Research B. 2019. V. 451. P. 99–103.

  10. Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., Verstichel B., Stradi D., Khomyakov P., Vej-Hansen U., Lee M.-E., Chill S., Rasmussen F., Penazzi G., Corsetti F., Ojanperä A., Jensen K., Palsgaard M., Martinez U., Blom A., Brandbyge M., Stokbro K. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools // J. Phys.: Condensed Matter. 2019. V. 32. P. 015901.

  11. Setten M.J., Giantomassi M., Bousquet E., Verstraete M.J., Hamann D.R., Gonze X., Rignanese G.-M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table // Comp. Phys. Comm. 2018. V. 226. P. 39−54.

  12. Perdew J., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Letters. 1996. V. 77. P. 3865−3868.

  13. Methfessel M., Paxton. A. High-precision sampling for brillouin-zone integration in metals // Physical Review B. 1989. V. 40. P. 3616−3621.

  14. Daw M.S., Baskes M.I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. 1984. V. 29. P. 6443–6453.

  15. Rapoport D.C. The art of molecular dynamics simulation, 2nd edition. Cambridge University Press, 2004. 565 p.

  16. Ackland G.J., Mendelev M.I., Srolovitz D.J., Han S.W., Barashev A.V. Development of an interatomic potential for phosphorus impurities in α-iron // J. Phys.: Condens. Matter. 2004. S2629–S2642.

  17. Olsson P., Wallenius J., Domain C., Nordlund K., Malerba L. Two-band modeling of α-prime phase formation in Fe–Cr // Phys. Rev. B. 2005. V. 72. P. 214119.

  18. Eich S. M., Beinke D., Schmitz G. Embedded-atom potential for an accurate thermodynamic description of the iron–chromium system // Comp. Mater. Sci. 2015. V. 104. P. 185–192.

  19. Zheng H., Li X.-G., Tran R., Chen C., Horton M., Winston D., Persson K., Ong S. Grain boundary properties of elemental metals // Acta Mater. 2020. V. 186. P. 40−49.

  20. Wang J., Madsen G., Drautz R. Grain boundaries in bcc-fe: a density-functional theory and tight-binding study // Modelling and Simulation in Mater. Sci. Eng. 2018. V. 26. P. 025008.

  21. Sokolov J., Jona F., Marcus P.M. Trends in metal surface relaxation // Solid State Comm. 1984. V. 49. P. 307−312.

  22. Blonski P., Kiejna A. Structural, electronic, and magnetic properties of bcc iron surfaces // Surface Sci. 2007. V. 601. P. 123−133.

  23. Jin H., Elfimov I., Militzer M. Study of the interaction of solutes with Σ5 (013) tilt grain boundaries in iron using density-functional theory // J. Appl. Phys. 2014. V. 115. P. 093506.

  24. Olsson P., Domain D., Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe // Phys. Rev. B. 2007. V. 75. P. 014110.

  25. Львов П.Е., Светухин В.В. Влияние границ зерен на распределение компонентов в бинарных сплавах // ФТТ. 2017. Т. 59. С. 2425−2434.

  26. Kamachali R.D. A model for grain boundary thermodynamics // RSC Advances. 2020. V. 10. P. 26728−26741.

  27. L’vov P.E., Sibatov R.T. Phase-field model of grain boundary diffusion in nanocrystalline solids: Anisotropic fluctuations, anomalous diffusion, and precipitation // J. Appl. Phys. 2022. V. 132. P. 124304.

Дополнительные материалы отсутствуют.