Физика металлов и металловедение, 2023, T. 124, № 8, стр. 687-691

Ультразвуковой способ обработки поверхности анизотропной электротехнической стали для снижения ее полных магнитных потерь на перемагничивание

В. Ф. Тиунов *

Институт физики металлов УрО РАН
620108 Екатеринбург, ул. С. Ковалевской, 18, Россия

* E-mail: tiunov@imp.uran.ru

Поступила в редакцию 08.12.2022
После доработки 13.06.2023
Принята к публикации 18.06.2023

Аннотация

Описан ультразвуковой метод формирования локально-деформированных зон (ЛДЗ) в виде механических царапин, наносимых на поверхность анизотропной электротехнической стали (АЭС) для дробления ее доменной структуры с целью снижения полных магнитных потерь Рп. Показано, что вследствие подобной обработки на примере АЭС типа 3407 величина Рп снижается в среднем на 10–15%. При этом воздействие ультразвука на рабочий инструмент приводит к существенному увеличению скорости обработки (2.0–2.5 м/с). В отличие от этого, скорость нанесения ЛДЗ обычным механическим скрайбированием не превышала 10–15 см/с при значительном давлении на рабочий инструмент.

Ключевые слова: анизотропная электротехническая сталь, магнитные потери, локальные деформированные зоны, ультразвуковая обработка

Список литературы

  1. Дружинин В.В. Магнитные свойства электротехнической стали. М.: Энергия, 1974. 240 с.

  2. Pгy R.H., Bean C.P. Calculation of the energy loss in magnetic sheet materials using a domain model // J. Appl. Phys. 1958. V. 29. P. 532–533.

  3. Лобанов М.Л., Юровских А.С., Кардонина Н.И., Русаков Г.М. Методы исследования текстур в материалах: учеб.-метод. пособие. Екатеринбург: Изд‑во Урал. ун-та, 2014. 115 с.

  4. Puchý V., Falat L., Kovác F., Petryshynets I., Džunda R., Šebek M. The Influence of Fiber Laser Pulse Processing on Coercivity and Nanohardness of Fe–3.2Si Grain-Oriented Electrical Steel in relation with its Surface Changes and Magnetic Domains Modifications // Acta Phys. Polonica. 2017. V. 131. № 6. P. 1445–1449.

  5. Rauschera P., Hauptmann J., Beyer E. Laser scribing of grain oriented electrical steel under the aspect of industrial utilization using high power laser beam sources // Phys. Procedia. 2013. V. 41. P. 312–318.

  6. Пудов В.И., Драгошанский Ю.Н. Улучшение функциональных свойств магнитопроводов локальными деформационными воздействиями / Сб. Перспективные материалы и технологии. НАН Беларуси. Брест. 2019. С. 27–31.

  7. Тиунов В.Ф. О влиянии неоднородности перемагничивания анизотропной электротехнической стали Fe–3% Si на магнитные потери во вращающихся магнитных полях // ФММ. 2018. Т. 119. № 9. С. 876–881.

  8. Тиунов В.Ф., Корзунин Г.С. Контроль неоднородности магнитной проницаемости листовой анизотропной электротехнической стали // Дефектоскопия. 2019. № 3. С. 46–49.

  9. Попилов Л.Я. Справочник по электрическим и ультразвуковым методам обработки материалов. М., Л.: Машгиз, 1963. 400 с.

  10. Тиунов В.Ф. Влияние особенностей искусственного дробления доменной структуры анизотропной электротехнической стали Fe–3% Si на эффективность снижения величины ее магнитных потерь // ФММ. 2022. Т. 123. № 3. С. 326–332.

  11. Зайкова В.А., Старцева И.Е., Филиппов Б.Н. Доменная структура и магнитные свойства электротехнических сталей. М.: Наука, 1992. 270 с.

  12. Тиунов В.Ф., Стародубцев Ю.Н., Катаев В.А. Динамическое поведение доменной структуры и магнитные потери бикристаллов кремнистого железа // ФММ. 1990. № 6. С. 63–68.

  13. Тиунов В.Ф., Драгошанский Ю.Н. Влияние динамического поведения замыкающей доменной структуры на магнитные потери в кристаллах Fe–3% Si // ФММ. 1989. Т. 68. Вып. 6. С. 1117–1124.

  14. Тиунов В.Ф., Зайкова В.А. Динамика доменной структуры и электромагнитные потери в кристаллах Fe–3% Si, перемагничиваемых непараллельно оси легчайшего намагничивания // ФММ. 1985. Т. 59. Вып. 6. С. 1129–1136.

Дополнительные материалы отсутствуют.