Физика металлов и металловедение, 2023, T. 124, № 8, стр. 732-738

Атомистическое моделирование симметричной и асимметричных границ зерен наклона Σ5 ❬001❭ в ниобии: структура, энергия, точечные дефекты, зернограничная самодиффузия

М. Е. Ступак a, М. Г. Уразалиев a, В. В. Попов a*

a Институт физики металлов им. М.Н. Михеева УрО РАН
620108 Екатеринбург, ул. С. Ковалевской, 18, Россия

* E-mail: vpopov@imp.uran.ru

Поступила в редакцию 24.05.2023
После доработки 20.06.2023
Принята к публикации 22.06.2023

Аннотация

Методами компьютерного моделирования исследованы симметричная и три асимметричные границы зерен наклона Σ5 $\left\langle {001} \right\rangle $ в ниобии. Методом молекулярно-статического моделирования рассчитаны структура и энергии рассматриваемых границ, а также энергии образования точечных дефектов в них. Проанализированы зависимости энергий образования точечных дефектов от расстояния от плоскости границы зерна. Методом молекулярной динамики рассчитаны коэффициенты зернограничной самодиффузии для рассматриваемых границ.

Ключевые слова: границы зерен, молекулярная статика, молекулярная динамика, точечные дефекты, зернограничная диффузия

Список литературы

  1. Sutton A.P., Balluffi R.W. Interfaces in Crystalline Materials. Clarendon Press, Oxford, 1995. 819 p.

  2. Liu Z.-H., Feng Y.-X., Shang J.-X. Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation // Appl. Surface Sci. 2016. V. 370. P. 19–24. https://doi.org/10.1016/j.apsusc.2016.02.097

  3. Singh D., Parashar A. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium // Comp. Mater. Sci. 2018. V. 143. P. 126–132. https://doi.org/10.1016/j.commatsci.2017.11.005

  4. Singh D., Sharma P., Parashar A. Atomistic simulations to study point defect dynamics in bi-crystalline niobium // Mater. Chem. Phys. 2020. V. 255. P. 123628. https://doi.org/10.1016/j.matchemphys.2020.123628

  5. Singh D., Parashar A.A. Comparison between Σ3 Asymmetrical Tilt Grain Boundary Energies in Niobium Obtained Analytically and through Molecular Dynamics Based Simulations // Mater. Sci. Forum Submitted. 2020. V. 998. P. 179–184. https://doi.org/10.4028/www.scientific.net/MSF.998.179

  6. Popov V.V., Stupak M.E., Urazaliev M.G. Atomistic Simulation of Grain Boundaries in Niobium: Structure, Energy, Point Defects and Grain-Boundary Self-Diffusion // J. Phase Equilib. Diffus. 2022. V. 43. P. 401–408. https://doi.org/10.1007/s11669-022-00981-6

  7. Lipnitskii A.G., Nelasov I.V., Golosov E.V., Kolobov Y.R., Maradudin D.N. A molecular-dynamics simulation of grain-boundary diffusion of niobium and experimental investigation of its recrystallization in a niobium-copper system // Russian Phys. J. 2013. V. 56(3). P. 330–337. https://doi.org/10.1007/s11182-013-0036-2

  8. Plimton S. Fast Parallel Algorithms for Short_Range Molecular Dynamics // J. Comp. Phys. 1995. V. 117. P. 1–19. https://doi.org/10.1006/jcph.1995.1039

  9. Tschopp M.A., McDowell D.L. Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium // Phil. Mag. 2007. V. 87(22). P. 3147–3173. https://doi.org/10.1080/14786430701255895

  10. Уразалиев М.Г., Ступак М.Е., Попов В.В. Структура и энергия симметричных границ наклона с осью $\left\langle {110} \right\rangle $ в Ni и энергии образования вакансий в границах зерен // ФММ. 2021. Т. 122. № 7. С. 713–720. https://doi.org/10.1134/S0031918X2107013910.1134/S0031918X21070139

  11. Zhang Y., Ashcraft R., Mendelev M.I., Wang C.Z., Kelton K.F. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy // J. Chem. Phys. 2016. V. 145(20). P. 204 505. https://doi.org/10.1063/1.4968212

  12. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool // Modelling Simul. Mater. Sci. Eng. 2010. V. 18. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012

  13. Polyak B.T. The conjugate gradient method in extremal problems // USSR Comput. Math. Math. Phys. 1969. V. 9(4). P. 94–112. https://doi.org/10.1016/0041-5553(69)90035-4

  14. Nosé S. A unified formulation of the constant temperature molecular dynamics methods // J. Chem. Phys. 1984. V. 81. P. 511. https://doi.org/10.1063/1.447334

  15. Hoover W.G., Holian B.L. Kinetic moments method for the canonical ensemble distribution // Phys. Lett. Sect. A Gen. Solid State Phys. 1996. V. 211. P. 253–257. https://doi.org/10.1016/0375-9601(95)00973-6

  16. Novoselov I.I., Kuksin A.Y., Yanilkin A.V. Energies of formation and structures of point defects at tilt grain boundaries in molybdenum // Phys. Solid State. 2014. V. 56. P. 1401–1407. https://doi.org/10.1134/S1063783414070282

  17. Mendelev M.I., Zhang H., Srolovitz D.J. Grain boundary self-diffusion in Ni: Effect of boundary inclination // J. Mater. Res. 2005. V. 20. No. 5. P. 1146–1153. https://doi.org/10.1557/JMR.2005.0177

  18. Hart E.W. On the role of dislocations in bulk diffusion // Acta Metal. 1957. V. 5. Issue 10. P. 597. https://doi.org/10.1016/0001-6160(57)90127-X

  19. Divinski S.V., Bokstein B.S. Recent Advances and Unsolved Problems of Grain Boundary Diffusion // Defect and Diffusion Forum 2011. V. 309–310. P. 1–8. https://doi.org/10.4028/www.scientific.net/DDF.309-310.1

  20. Koppers M., Mishin Yu., Herzig Chr. Diffusion of cobalt along stationary and moving grain boundaries in niobium // Acta Metal, Mater. 1994. V. 42. № 8. P. 2859–2868. https://doi.org/10.1016/0956-7151(94)90227-5

  21. Faken Daniel, Jónsson Hannes. Systematic analysis of local atomic structure combined with 3D computer graphics // Comp. Mater. Sci. 1994. V. 2. Issue 2. P. 279–286. https://doi.org/10.1016/0927-0256(94)90109-0

  22. Larsen P.M. Revisiting the common neighbour analysis and the centrosymmetry parameter, arXiv preprint arXiv:2003.08879 (2020). https://doi.org/10.48550/arXiv.2003.08879

  23. Fellinger M.R., Park H., Wilkins J.W. Force-matched embedded atom method potential for niobium // Phys. Rev. B: Condens. Matter. 2010. V. 81. P. 144119. https://doi.org/10.1103/PhysRevB.81.144119

  24. Tschopp M.A., Solanki K.N., Gao F., Sun X., Khaleel M.A., Horstemeyer M.F. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe // Phys. Rev. 2012. V. 85. P. 064108. https://doi.org/10.1103/PhysRevB.85.064108

  25. Карькина Л.Е., Карькин И.Н., Горностырев Ю.Н. Зернограничное проскальзывание по специальным асимметричным границам зерен в бикристаллах Al. Атомистическое молекулярно-динамическое моделирование// ФММ. 2021. Т. 122. № 11. С. 1187–1195. https://doi.org/10.31857/S0015323021110073

Дополнительные материалы отсутствуют.