Физика плазмы, 2023, T. 49, № 6, стр. 590-599

Стримеры, инициируемые емкостным разрядом при давлениях воздуха 0.2–6 Торр

В. Ф. Тарасенко a*, Е. Х. Бакшт a, В. А. Панарин a, Н. П. Виноградов a

a Институт сильноточной электроники СО РАН
Томск, Россия

* E-mail: VFT@loi.hcei.tsc.ru

Поступила в редакцию 17.02.2023
После доработки 28.02.2023
Принята к публикации 01.03.2023

Аннотация

Проведены исследования плазменных диффузных струй (ПДС), имеющих красный цвет, которые состоят из стримеров (волн ионизации). Обнаружено, что плазма, создаваемая в воздухе при давлениях 0.2–4 Торр импульсно-периодическим емкостным разрядом в диэлектрической трубке, инициирует за один импульс две ПДС, в каждой из которых регистрируется до трех стримеров. Установлено, что по два стримера, которые распространяются от кольцевых электродов в противоположных направлениях, формируются одним импульсом напряжения положительной полярности. С помощью ICCD-камеры и кремниевого ФЭУ показано, что приход фронта положительного стримера в область остановки фронта отрицательного стримера, который генерировался первым на фронте отрицательного импульса напряжения, приводит к формированию третьего тонкого стримера в виде конуса с малым углом при вершине. Установлено, что направление движения третьего стримера совпадает с направлением инициирующих его стримеров, однако его скорость меньше на два порядка. Показано, что при низких давлениях воздуха скорость первых положительных стримеров больше, чем у отрицательных, а расстояние, на которое они распространяются при напряжении генератора 7 кВ и давлении воздуха 0.2 Торр превышает 1 м.

Ключевые слова: воздух низкого давления, емкостной разряд, стример, волна ионизации, моделирование спрайтов

Список литературы

  1. Füllekrug M., Mareev E.A., Rycroft M.J. (Eds.). Sprites, elves and intense lightning discharges. V. 225. Springer Science & Business Media, 2006.

  2. Jehl A., Farges T., and Blanc E. // J. Geophys. Res. Space Physics. 2013. V. 118. P. 454. https://doi.org/10.1029/2012JA018144

  3. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Rivera L., Sala-zar H., Tulupov V.I., Vedenkin N.N., Yashin I.V. // J. of Geophysical Research: Atmospheres. 2013. V. 118. № 2. P. 370. https://doi.org/10.1029/2012JD017501

  4. Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. // Geophys. Res. Lett. 2018. V. 45. P. 13. doi.org/https://doi.org/10.1029/2018GL079576

  5. McHarg M.G., Stenbaek-Nielsen H.C., Kammae T. // Geophys. Res. Lett. 2007. V. 34. P. L06804. https://doi.org/10.1029/2006GL027854

  6. Ebert U., Nijdam S., Li C., Luque A., Briels T., van Veldhuizen E. // JGR: Space Physics. 2010. V. 115. № A7. A00E43. https://doi.org/10.1029/2009JA014867

  7. Pasko Victor P., Jianqi Qin, and Celestin Sebastien // Surveys in Geophysics. 2013. V. 34. P. 797. https://doi.org/10.1007/s10712-013-9246-y

  8. Vasilyak L.M., Kostyuchenko S.V., Kudryavtsev N.N., Filyugin I.V. // Phys. Usp. 1994. V. 37. № 3. P. 247. https://doi.org/10.1070/PU1994v037n03ABEH000011

  9. Anikin N.B., Zavialova N.A., Starikovskaia S.M., Starikovskii A.Y. // IEEE Transactions on Plasma Science. 2008. V. 36. P. 902. https://doi.org/10.1109/TPS.2008.924504

  10. Huang B., Zhang C., Qiu J., Zhang X., Ding Y., Shao T. // Plasma Sourc. Sci. and Technnol. 2019. V. 28. № 9. P. 095001.

  11. Goto Y., Ohba Y., Narita K., Goto Y., Ohba Y., Narita K. // Journal of Atmospheric Electricity. 2007. V. 27. Iss. 2. P. 105.

  12. Tarasenko V., Vinogradov N., Baksht E., and Sorokin D. // Journal of Atmospheric Science Research. 2022. V. 5. Iss. 3. P. 26. https://doi.org/10.30564/jasr.v5i3.4858

  13. Тарасенко В.Ф., Бакшт Е.Х., Виноградов Н.П. // Прикладная физика. 2022. № 4. С. 11. https://doi.org/10.51368/1996-0948-2022-4-11-17

  14. Бакшт Е.Х., Виноградов Н.П., Тарасенко В.Ф. // Оптика атмосферы и океана. 2022. Т. 35. № 9. С. 777. https://doi.org/10.15372/AOO20220911

  15. Sorokin D., Tarasenko V., Baksht E.Kh., Vinogradov N.P. // European Journal of Environment and Earth Sciences. 2022. V. 3. Iss. 6. P. 42. https://doi.org/10.24018/ejgeo.2022.3.6.322

  16. Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009, 736 с.

  17. Starikovskiy A.Yu, Aleksandrov N.L., Shneider M.N. // Journal of Applied Physics. 2021. V. 129. № 6. P. 063301. https://doi.org/10.1063/5.0037669

  18. Wu S., Cheng W., Huang G., Wu F., Liu C., Liu X., Zhang C., Lu X. // Physics of Plasmas. 2018 V. 25. № 12. P. 123507. https://doi.org/10.1063/1.5042669

  19. Tarasenko V.F., Kuznetsov V.S., Panarin V.A., Skakun V.S., Sosnin E.A., Baksht E.K. // JETP Letters. 2019. V. 110. P. 85. https://doi.org/10.1063/1.4981385

  20. Tarasenko V., Baksht E., Kuznetsov V., Panarin V., Skakun V., Sosnin E., Beloplotov D. // Journal of Atmospheric Science Research. 2020. V. 3. Iss. 4. P. 28. https://ojs.bilpublishing.com/index.php/jasr

  21. Tarasenko V.F., Sosnin E.A., Skakun V.S., Panarin V.A., Trigub M.V., Evtushenko G.S. // Physics of Plasmas. 2017. V. 24. № 4. P. 043514.

  22. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevni-kov V.Yu., Naidis G.V., Skakun V.S., Panarin V.A., Tarasenko V.F. // Phys. Usp. 2021. V. 64. Is. 2. P. 191. https://doi.org/10.3367/UFNe.2020.03.038735

  23. Panarin V.A., Skakun V.S., Baksht E.K., Sosnin E.A., Kuznetsov V.S., Sorokin D.A. // Plasma Physics Reports. 2022. V. 48. № 7. P. 812.

  24. Hoder T., Bonaventura Z., Prukner V., Gordillo-Váz-quez F.J., Šimek M. // Plasma Sources Science and Technology. 2020. V. 29. № 3. P. 03LT01. https://doi.org/10.1088/1361-6595/ab7087

  25. Stenbaek-Nielsen H.C., McHarg M.G., Kanmae T., and Sentman D.D. // Geophys. Res. Lett. 2007. V. 34. № 11. P. L11105. https://doi.org/10.1029/2007GL029881

  26. Stenbaek-Nielsen H.C., Kanmae T., McHarg M.G., Haaland R. // Surveys in Geophysics. 2013. V. 34. P. 769.

  27. Zabotin N.A., Wright J.W. // Geophys. Res. Lett. 2001. V. 28. № 13. P. 2593.

  28. Janalizadeh R., Pasko V.P. // Electron Impact Ionization of Metallic Species at Sprite Altitudes as a Mechanism of Initiation of Sprite Streamers. AGU Fall Meeting. 2018.

  29. Tarasenko V., Vinogradov N., Beloplotov D., Burachenko A., Lomaev M., Sorokin D. // Nanomaterials. 2022. V. 12. № 4. P. 652. https://doi.org/10.3390/nano12040652

  30. Hervig M., Thompson R.E., McHugh M., Gordley L.L., Russell III J.M., Summers M.E. // Geophys. Res. Lett. 2001. V. 28 № 6. P. 971. https://doi.org/10.1029/2000GL012104

  31. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.

Дополнительные материалы отсутствуют.