Физиология растений, 2023, T. 70, № 4, стр. 433-448

Клеточный цикл растений: молекулярные события, регуляция внешними факторами и фитогормонами

А. В. Носов a*, А. А. Фоменков a**

a Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Москва, Россия

* E-mail: alexv.nosov@mail.ru
** E-mail: artem.fomenkov@gmail.com

Поступила в редакцию 21.11.2022
После доработки 21.11.2022
Принята к публикации 21.11.2022

Аннотация

В данной лекции представлены классические сведения и новые данные о молекулярных событиях “базового” (core) клеточного цикла (КЦ) растений. Кратко рассмотрено влияние водного дефицита, CO2, света и температуры на КЦ. Представлены данные о регуляции пролиферации клеток ауксинами, цитокининами, абсцизовой кислотой, гиббереллинами, брассиностероидами и этиленом. Обсуждаются закономерности и особенности влияния фитогормонов на КЦ в разных органах и тканях.

Ключевые слова: клеточный цикл, пролиферация клеток, фитогормоны, циклины, циклин-зависимые киназы, эндоредупликация

Список литературы

  1. Wilson E.B. The Cell in Development and Inheritance. New York: Macmillan, 1911. 483 p.

  2. Vercruysse J., Baekelandt A., Gonzalez N., Inzé D. Molecular networks regulating cell division during Arabidopsis leaf growth // J. Exp. Bot. 2020. V. 71. P. 2365. https://doi.org/10.1093/jxb/erz522

  3. Ivanov V.B., Dubrovsky J.G. Longitudinal zonation pattern in plant roots: conflicts and solutions // Trends Plant Sci. 2013. V. 18. P. 237. https://doi.org/10.1016/j.tplants.2012.10.002

  4. Sablowski R. Coordination of plant cell growth and division: collective control or mutual agreement? // Curr. Opin. Plant Biol. V. 34. P. 54. https://doi.org/10.1016/j.pbi.2016.09.004

  5. Howard A., Pelc S.R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage // Heredity (Edinb.) Suppl. 1953. V. 6. P. 261.

  6. Swift H.H. The constancy of desoxyribose nucleic acid in plant nuclei // Proc. Natl. Acad. Sci. USA. 1950. V. 36. P. 643. https://doi.org/10.1073/pnas.36.11.643

  7. Greilhuber J., Dolezel J., Lysák M.A., Bennett M.D. The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents // Ann. Bot. V. 95. P. 255. https://doi.org/10.1093/aob/mci019

  8. Kejnovsky E., Leitch I.J., Leitch A.R. Contrasting evolutionary dynamics between angiosperm and mammalian genomes // Trends Ecol. Evol. 2009. V. 24. P. 572. https://doi.org/10.1016/j.tree.2009.04.010

  9. Pellicer J., Fay M.F., Leitch I.J. The largest eukaryotic genome of them all? // Bot. J. Linn. Soc. 2010. V. 164. P. 10. https://doi.org/10.1111/j.1095-8339.2010.01072.x

  10. Bechhoefer J., Rhind N. Replication timing and its emergence from stochastic processes // Trends Genet. 2012. V. 28. P. 374. https://doi.org/10.1016/j.tig.2012.03.011

  11. Greenberg A., Simon I. S phase duration is determined by local rate and global organization of replication // Biology. 2022. V. 11. 718. https://doi.org/10.3390/biology11050718

  12. Lehti-Shiu M.D., Shiu S.-H. Diversity, classification and function of the plant protein kinase superfamily // Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2012. V. 367. P. 2619. https://doi.org/10.1098/rstb.2012.0003

  13. Cross F., Roberts J., Weintraub H. Simple and complex cell cycles // Annu. Rev. Cell Biol. 1989. V. 5. P. 341. https://doi.org/10.1146/annurev.cb.05.110189.002013

  14. Satyanarayana A., Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms // Oncogene. 2009. V. 28. P. 2925. https://doi.org/10.1038/onc.2009.170

  15. Van’t Hof J. The regulation of cell division in higher plants // Brookhaven Symp. Biol. 1973. V. 25. P. 152.

  16. Polyn S., Willems A., De Veylder L. Cell cycle entry, maintenance, and exit during plant development // Curr. Opin. Plant Biol. 2015. V. 23. P. 1. https://doi.org/10.1016/j.pbi.2014.09.012

  17. Scholes D.R., Paige K.N. Plasticity in ploidy: a generalized response to stress // Trends Plant Sci. 2015. V. 20. P. 165. https://doi.org/10.1016/j.tplants.2014.11.007

  18. Carneiro A.K., Montessoro P.D.F., Fusaro A.F., Araújo B.G., Hemerly A.S. Plant CDKs – driving the cell cycle through climate change // Plants. 2021. V. 10. 1804. https://doi.org/10.3390/plants10091804

  19. Sablowski R., Gutierrez C. Cycling in a crowd: coordination of plant cell division, growth, and cell fate // Plant Cell. 2022. V. 34. P. 193. https://doi.org/10.1093/plcell/koab222

  20. Blomme J., Inzé D., Gonzalez N. The cell-cycle interactome: a source of growth regulators? // J. Exp. Bot. 2014. V. 65. P. 2715. https://doi.org/10.1093/jxb/ert388

  21. Van Leene J., Hollunder J., Eeckhout D., Persiau G., Van De Slijke E., Stals H., Van Isterdael G., Verkest A., Neirynck S., Buffel Y., De Bodt S., Maere S., Laukens K., Pharazyn A., Ferreira P.C.G., et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana // Mol. Syst. Biol. 2010. V. 6. 397. https://doi.org/10.1038/msb.2010.53

  22. Jia R.-D., Guo C.-C., Xu G.-X., Shan H.-Y., Kong H.-Z. Evolution of the cyclin gene family in plants // J. Syst. Evol. 2014. V. 52. P. 651. https://doi.org/10.1111/jse.12112

  23. Vandepoele K., Raes J., De Veylder L., Rouzé P., Rombauts S., Inzé D. Genome-wide analysis of core cell cycle genes in Arabidopsis // Plant Cell. 2002. V. 14. P. 903. https://doi.org/10.1105/tpc.010445

  24. Desvoyes B., De Mendoza A., Ruiz-Trillo I., Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division // J. Exp. Bot. 2014. V. 65. P. 2657. https://doi.org/10.1093/jxb/ert411

  25. Desvoyes B., Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond // EMBO J. 2020. V. 39. e105802. https://doi.org/10.15252/embj.2020105802

  26. Romeiro Motta M., Zhao X.A., Pastuglia M., Belcram K., Roodbarkelari F., Komaki M., Harashima H., Komaki S., Kumar M., Bulankova P., Heese M., Riha K., Bouchez D., Schnittger A. B1-type cyclins control microtubule organization during cell division in Arabidopsis // EMB-O Rep. 2022. V. 23. e53995. https://doi.org/10.15252/embr.202153995

  27. Menges M., De Jager S.M., Gruissem W., Murray J.A.H. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control // Plant J. 2005. V. 41. P. 546. https://doi.org/10.1111/j.1365-313X.2004.02319.x

  28. Ito M. Expression of mitotic cyclins in higher plants: transcriptional and proteolytic regulation // Plant Biotechnol. Rep. 2014. V. 8. P. 9. https://doi.org/10.1007/s11816-013-0297-9

  29. Araki S., Ito M., Soyano T., Nishihama R., Machida Y. Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco // J. Biol. Chem. 2004. V. 279. P. 32979. https://doi.org/10.1074/jbc.M403171200

  30. Umeda M., Shimotohno A., Yamaguchi M. Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants // Plant Cell Physiol. 2005. V. 46. P. 1437. https://doi.org/10.1093/pcp/pci170

  31. Pedroza-Garcia J.A., Xiang Y., De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses // Plant J. 2022. V. 109. P. 490. https://doi.org/10.1111/tpj.15567

  32. De Veylder L., Larkin J.C., Schnittger A. Molecular control and function of endoreplication in development and physiology // Trends Plant Sci. 2011. V. 16. P. 624. https://doi.org/10.1016/j.tplants.2011.07.001

  33. De Veylder L., Beeckman T., Beemster G.T., Krols L., Terras F., Landrieu I., Van Der Schueren E., Maes S., Naudts M., Inzé D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis // Plant Cell. 2001. V. 13. P. 1653. https://doi.org/10.1105/tpc.010087

  34. Churchman M.L., Brown M.L., Kato N., Kirik V., Hülskamp M., Inzé D., De Veylder L., Walker J.D., Zheng Z., Oppenheimer D.G., Gwin T., Churchman J., Larkin J.C. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana // Plant Cell. 2006. V. 18. P. 3145. https://doi.org/10.1105/tpc.106.044834

  35. Peres A., Churchman M.L., Hariharan S., Himanen K., Verkest A., Vandepoele K., Magyar Z., Hatzfeld Y., Van Der Schueren E., Beemster G.T.S., Frankard V., Larkin J.C., Inzé D., De Veylder L. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses // J. Biol. Chem. 2007. V. 282. P. 25588. https://doi.org/10.1074/jbc.M703326200

  36. Han S.K., Herrmann A., Yang J., Iwasaki R., Sakamoto T., Desvoyes B., Kimura S., Gutierrez C., Kim E.-D., Torii K.U. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage // Dev. Cell. 2022. V. 57. P. 569. https://doi.org/10.1016/j.devcel.2022.01.014

  37. Shoaib M., Nair N., Sørensen C.S. Chromatin landscaping at mitotic exit orchestrates genome function // Front. Genet. 2020. V. 11. 103. https://doi.org/10.3389/fgene.2020.00103

  38. Buschmann H., Müller S. Update on plant cytokinesis: rule and divide // Curr. Opin. Plant Biol. 2019. V. 52. P. 97. https://doi.org/10.1016/j.pbi.2019.07.003

  39. Jakoby M., Schnittger A. Cell cycle and differentiation // Curr. Opin. Plant Biol. 2004. V. 7. P. 661. https://doi.org/10.1016/j.pbi.2004.09.015

  40. Maluszynska J., Kolano B., Sas-Nowosielska H. Endopolyploidy in plants // Plant Genome Diversity. V. 2 / Eds. J. Greilhuber et al. Springer. 2013. P. 99. https://doi.org/10.1007/978-3-7091-1160-4_7

  41. Breuer C., Braidwood L., Sugimoto K. Endocycling in the path of plant development // Curr. Opin. Plant Bio-l. 2014. V. 17. P. 78. https://doi.org/10.1016/j.pbi.2013.11.007

  42. Jiang S., Wei J., Li N., Wang Z., Zhang Y., Xu R., Zhou L., Huang X., Wang L., Guo S., Wang Y., Song C.-P., Qian W., Li Y. The UBP14-CDKB1;1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis // Plant Cell. 2022. V. 34. P. 1308. https://doi.org/10.1093/plcell/koac002

  43. Duan S., Hu L., Dong B., Jin H.L., Wang H.B. Signaling from plastid genome stability modulates endoreplication and cell cycle during plant development // Cell Rep. 2020. V. 32. 108019. https://doi.org/10.1016/j.celrep.2020.108019

  44. Mahapatra K., Roy S. SOG1 transcription factor promotes the onset of endoreduplication under salinity stress in Arabidopsis // Sci. Rep. 2021. V. 11. 11659. https://doi.org/10.1038/s41598-021-91293-1

  45. Barow M., Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size // Plant Cell Environ. 2003. V. 26. P. 571. https://doi.org/10.1046/j.1365-3040.2003.00988.x

  46. Melaragno J., Mehrotra B., Coleman A. Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis // Plant Cell. 1993. V. 5. P. 1661. https://doi.org/10.1105/tpc.5.11.1661

  47. Sugimoto-Shirasu K., Roberts K. “Big it up”: endoreduplication and cell-size control in plants // Curr. Opin. Plant Biol. 2003. V. 6. P. 544. https://doi.org/10.1016/j.pbi.2003.09.009

  48. Granier C., Cookson S.J., Tardieu F., Muller B. Cell cycle and environmental stresses // Cell cycle control and plant development. Annu. Plant Rev. V. 32 / Ed. D. Inzé. Blackwell. 2007. P. 335. https://doi.org/10.1002/9781119312994.apr0346

  49. Moreno S., Canales J., Hong L., Robinson D., Roeder A.H., Gutiérrez R.A. Nitrate defines shoot size through compensatory roles for endoreplication and cell division in Arabidopsis thaliana // Curr. Biol. 2020. V. 30. P. 1988. https://doi.org/10.1016/j.cub.2020.03.036

  50. Tenorio Berrío R., Nelissen H., Inzé D., Dubois M. Increasing yield on dry fields: molecular pathways with growing potential // Plant J. 2022. V. 109. P. 323. https://doi.org/10.1111/tpj.15550

  51. Kinsman E.A., Lewis C., Davies M.S., Young J.E., Francis D., Vilhar B., Ougham H.J. Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata // Plant Cell Environ. 1997. V. 20. P. 1309. https://doi.org/10.1046/j.1365-3040.1997.d01-21.x

  52. Taylor G., Tricker P.J., Zhang F.Z., Alston V.J., Miglietta F., Kuzminsky E. Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar // Plant Physiol. 2003. V. 131. P. 177. https://doi.org/10.1104/pp.011296

  53. Maksymowych R. Analysis of leaf development // Developmental and cell biology / Eds. M. Abercrombie et al. Cambridge University Press. 1973. 109 p.

  54. López-Juez E., Dillon E., Magyar Z., Khan S., Hazeldine S., de Jager S.M., Murray J.A.H., Beemster G.T.S., Bögre L., Shanahan H. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis // Plant Cell. 2008. V. 20. P. 947. https://doi.org/10.1105/tpc.107.057075

  55. Bao L., Inoue N., Ishikawa M., Gotoh E., Teh O.-K., Higa T., Morimoto T., Ginanjar E.F., Harashima H., Noda N., Watahiki M., Hiwatashi Y., Sekine M., Hasebe M., Wada M., Fujita T. A PSTAIRE-type cyclin-dependent kinase controls light responses in land plants // Sci. Adv. 2022. V. 8. eabk2116. https://doi.org/10.1126/sciadv.abk2116

  56. Fung-Uceda J., Lee K., Seo P.J., Polyn S., De Veylder L., Mas P. The circadian clock sets the time of DNA replication licensing to regulate growth in Arabidopsis // Dev. Cell. 2018. V. 45. P. 101. https://doi.org/10.1016/j.devcel.2018.02.022

  57. Nishihama R., Kohchi T. Evolutionary insights into photoregulation of the cell cycle in the green lineage // Curr. Opin. Plant Biol. 2013. V. 16. P. 630. https://doi.org/10.1016/j.pbi.2013.07.006

  58. Beel B., Prager K., Spexard M., Sasso S., Weiss D., Müller N., Heinnickel M., Dewez D., Ikoma D., Grossman A.R., Kottke T., Mittag M. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii // Plant Cell. 2012. V. 24. P. 2992. https://doi.org/10.1105/tpc.112.098947

  59. Qiao F., Petrasek J., Nick P. Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line // J. Exp. Bot. 2010. V. 61. P. 503. https://doi.org/10.1093/jxb/erp319

  60. Okello R.C.O., de Visser P.H.B., Heuvelink E., Marcelis L.F.M., Struik P.C. Light mediated regulation of cell division, endoreduplication and cell expansion // Environ. Exp. Bot. 2016. V. 121. P. 39. https://doi.org/10.1016/j.envexpbot.2015.04.003

  61. Granier C., Tardieu F. Is thermal time adequate for expressing the effects of temperature on sunflower leaf development? // Plant Cell Environ. 1998. V. 21. P. 695. https://doi.org/10.1046/j.1365-3040.1998.00319.x

  62. Grif V.G., Ivanov V.B., Machs E.M. Cell cycle and its parameters in flowering plants // Tsitologiia. 2002. V. 44. P. 936.

  63. Thimann K.V. Antagonisms and similarities between cytokinins, abscisic acid and auxin (mini review) // Physiology and biochemistry of cytokinins in plants / Eds. M. Kaminek et al. SPB Academic Publishing. 1992. P. 395.

  64. Van de Poel B., Smet D., Van Der Straeten D. Ethylene and hormonal cross talk in vegetative growth and development // Plant Physiol. 2015. V. 169. P. 61. https://doi.org/10.1104/pp.15.00724

  65. Zluhan-Martínez E., López-Ruíz B.A., García-Gómez M.L., García-Ponce B., de la Paz Sánchez M., Álvarez-Buylla E.R., Garay-Arroyo A. Integrative roles of phytohormones on cell proliferation, elongation and differentiation in the Arabidopsis thaliana primary root // Front. Plant Sci. 2021. V. 12. 659155. https://doi.org/10.3389/fpls.2021.659155

  66. Jiang K., Guo H., Zhai J. Interplay of phytohormones and epigenetic regulation: a recipe for plant development and plasticity // J. Integr. Plant Biol. 2022. https://doi.org/10.1111/jipb.13384

  67. Péret B., De Rybel B., Casimiro I., Benková E., Swarup R., Laplaze L., Beeckman T., Bennett M.J. Arabidopsis lateral root development: an emerging story // Trends Plant Sci. 2009. V. 14. P. 399. https://doi.org/10.1016/j.tplants.2009.05.002

  68. Hemerly A.S., Ferreira P., de Almeida Engler J., Van Montagu M., Engler G., Inzé D. cdc2a expression in Arabidopsis is linked with competence for cell division // Plant Cell. 1993. V. 5. P. 1711. https://doi.org/10.1105/tpc.5.12.1711

  69. Brumos J., Robles L.M., Yun J., Vu T.C., Jackson S., Alonso J.M., Stepanova A.N. Local auxin biosynthesis is a key regulator of plant development // Dev. Cell. 2018. V. 47. P. 306. https://doi.org/10.1016/j.devcel.2018.09.022

  70. Ivanov V.B., Filin A.N. Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation // Funct. Plant Biol. 2017. V. 45. P. 215. https://doi.org/10.1071/FP16340

  71. Schaller G.E., Street I.H., Kieber J.J. Cytokinin and the cell cycle // Curr. Opin. Plant Biol. 2014. V. 21. P. 7. https://doi.org/10.1016/j.pbi.2014.05.015

  72. Pasternak T., Miskolczi P., Ayaydin F., Mészáros T., Dudits D., Fehér A. Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa // Plant Growth Regul. 2000. V. 32. P. 129. https://doi.org/10.1023/A:1010793226030

  73. Richard C., Lescot M., Inzé D., De Veylder L. Effect of auxin, cytokinin, and sucrose on cell cycle gene expression in Arabidopsis thaliana cell suspension cultures // Plant Cell. Tissue Organ Cult. 2002. V. 69. P. 167. https://doi.org/10.1023/A:1015241709145

  74. Mészáros T., Miskolczi P., Ayaydin F., Pettkó-Szandtner A., Peres A., Magyar Z., Horváth G.V., Bakó L., Fehér A., Dudits D. Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells // Plant Mol. Biol. 2000. V. 43. P. 595. https://doi.org/10.1023/a:1006412413671

  75. Hartig K., Beck E. Endogenous cytokinin oscillations control cell cycle progression of tobacco BY-2 cells // Plant Biol. 2005. V. 7. P. 33. https://doi.org/10.1055/s-2004-830474

  76. Riou-Khamlichi C., Huntley R., Jacqmard A., Murray J.A. Cytokinin activation of Arabidopsis cell division through a D-type cyclin // Science. 1999. V. 283. P. 1541. https://doi.org/10.1126/science.283.5407.1541

  77. Menges M., Samland A.K., Planchais S., Murray J.A.H. The D-Type Cyclin CYCD3;1 Is Limiting for the G1-to-S-Phase Transition in Arabidopsis // Plant Cell. 2006. V. 18. P. 893. https://doi.org/10.1105/tpc.105.039636

  78. Chen C.C., Fu S.F., Lee Y.I., Lin C.Y., Lin W.C., Huang H.J. Transcriptome analysis of age-related gain of callus-forming capacity in Arabidopsis hypocotyls // Plant Cell Physiol. 2012. V. 53. P. 1457. https://doi.org/10.1093/pcp/pcs090

  79. Cho H.-J., Kwon H.-K., Wang M.-H. Expression of Kip-related protein 4 gene (KRP4) in response to auxin and cytokinin during growth of Arabidopsis thaliana // BMB Rep. 2010. V. 43. P. 273. https://doi.org/10.5483/bmbrep.2010.43.4.273

  80. Magyar Z., De Veylder L., Atanassova A., Bakó L., Inzé D., Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division // Plant Cell. 2005. V. 17. P. 2527. https://doi.org/10.1105/tpc.105.033761

  81. Jurado S., Abraham Z., Manzano C., López-Torrejón G., Pacios L.F., Del Pozo J.C. The Arabidopsis cell cycle F‑box protein SKP2A binds to auxin // Plant Cell. 2010. V. 22. P. 3891. https://doi.org/10.1105/tpc.110.078972

  82. Del Pozo J.C., Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action // J. Exp. Bot. 2014. V. 65. P. 2617. https://doi.org/10.1093/jxb/ert363

  83. Sauer M., Kleine-Vehn J. AUXIN BINDING PROTEIN1: the outsider // Plant Cell. 2011. V. 23. P. 2033. https://doi.org/10.1105/tpc.111.087064

  84. Huang R., Zheng R., He J., Zhou Z., Wang J., Xiong Y., Xu T. Noncanonical auxin signaling regulates cell division pattern during lateral root development // Proc. Natl. Acad. Sci. USA. 2019. V. 116. P. 21285. https://doi.org/10.1073/pnas.1910916116

  85. Takahashi N., Kajihara T., Okamura C., Kim Y., Katagiri Y., Okushima Y., Matsunaga S., Hwang I., Umeda M. Cytokinins control endocycle onset by promoting the expression of an APC/C activator in Arabidopsis roots // Curr. Biol. 2013. V. 23. P. 1812. https://doi.org/10.1016/j.cub.2013.07.051

  86. Yang W., Cortijo S., Korsbo N., Roszak P., Schiessl K., Gurzadyan A., Wightman R., Jönsson H., Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis // Science. 2021. V. 371. P. 1350. https://doi.org/10.1126/science.abe2305

  87. Park J., Lee S., Park G., Cho H., Choi D., Umeda M., Choi Y., Hwang D., Hwang I. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression // Plant Physiol. 2021. V. 186. P. 1734. https://doi.org/10.1093/plphys/kiab180

  88. Humplík J.F., Bergougnoux V., Van Volkenburgh E. To stimulate or inhibit? That is the question for the function of abscisic acid // Trends Plant Sci. 2017. V. 22. P. 830. https://doi.org/10.1016/j.tplants.2017.07.009

  89. Sun L.R., Wang Y.B., He S.B., Hao F.S. Mechanisms for abscisic acid inhibition of primary root growth // Plant Signal. Behav. 2018. V. 13. e1500069. https://doi.org/10.1080/15592324.2018.1500069

  90. Tanaka Y., Nose T., Jikumaru Y., Kamiya Y. ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves // Plant J. 2013. V. 74. P. 448. https://doi.org/10.1111/tpj.12136

  91. Xie Q., Essemine J., Pang X., Chen H., Cai W. Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation // Plant Sci. 2020. V. 292. 110385. https://doi.org/10.1016/j.plantsci.2019.110385

  92. Luo X., Xu J., Zheng C., Yang Y., Wang L., Zhang R., Ren X., Wei S., Aziz U., Du J., Liu W., Tan W., Shu K. Abscisic acid inhibits primary root growth by impairing ABI4-mediated cell cycle and auxin biosynthesis // Plant Physiol. 2022. https://doi.org/10.1093/plphys/kiac407

  93. Novikova G.V., Stepanchenko N.S., Zorina A.A., Nosov A.V., Rakitin V.Y., Moshkov I.E., Los D.A. Coupling of cell division and differentiation in Arabidopsis thaliana cultured cells with interaction of ethylene and ABA signaling pathways // Life. 2020. V. 10. 15. https://doi.org/10.3390/life10020015

  94. Shtin M., Dello Ioio R., Del Bianco M. It’s time for a change: the role of gibberellin in root meristem development // Front. Plant Sci. 2022. V. 13. 882517 https://doi.org/10.3389/fpls.2022.882517

  95. Claeys H., De Bodt S., Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks // Trends Plant Sci. 2014. V. 19. P. 231. https://doi.org/10.1016/j.tplants.2013.10.001

  96. Oh M.-H., Honey S.H., Tax F.E. The control of cell expansion, cell division, and vascular development by brassinosteroids: a historical perspective // Int. J. Mol. Sci. 2020. V. 21. 1743. https://doi.org/10.3390/ijms21051743

  97. Hu Y., Bao F., Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis // Plant J. 2000. V. 24. P. 693. https://doi.org/10.1046/j.1365-313x.2000.00915.x

  98. Zhiponova M.K., Vanhoutte I., Boudolf V., Betti C., Dhondt S., Coppens F., Mylle E., Maes S., González-García M., Caño-Delgado A.I., Inzé D., Beemster G.T.S., De Veylder L., Russinova E. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf // New Phytol. 2013. V. 197. P. 490. https://doi.org/10.1111/nph.12036

  99. Apelbaum A., Burg S.P. Effect of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum // Plant Physiol. 1972. V. 50. P. 117. https://doi.org/10.1104/pp.50.1.117

  100. Herbert R.J., Vilhar B., Evett C., Orchard C.B., Rogers H.J., Davies M.S., Francis D. Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line // J. Exp. Bot. 2001. V. 52. P. 1615. https://doi.org/10.1093/jxb/52.361.1615

  101. Street I.H., Aman S., Zubo Y., Ramzan A., Wang X., Shakeel S.N., Kieber J.J., Schaller G.E. Ethylene inhibits cell proliferation of the Arabidopsis root meristem // Plant Physiol. 2015. V. 169. P. 338. https://doi.org/10.1104/pp.15.00415

  102. Stoynova-Bakalova E., Bakalov D.V., Baskin T.I. Ethylene represses the promoting influence of cytokinin on cell division and expansion of cotyledons in etiolated Arabidopsis thaliana seedlings // PeerJ. 2022. V. 10. e14315. https://doi.org/10.7717/peerj.14315

  103. Dan H., Imaseki H., Wasteneys G.O., Kazama H. Ethylene stimulates endoreduplication but inhibits cytokinesis in cucumber hypocotyl epidermis // Plant Physiol. 2003. V. 133. P. 1726. https://doi.org/10.1104/pp.103.025783

  104. Ortega-Martínez O., Pernas M., Carol R.J., Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root // Science. 2007. V. 317. P. 507. https://doi.org/10.1126/science.1143409

  105. Kazama H., Dan H., Imaseki H., Wasteneys G.O. Transient exposure to ethylene stimulates cell division and alters the fate and polarity of hypocotyl epidermal cells // Plant Physiol. 2004. V. 134. P. 1614. https://doi.org/10.1104/pp.103.031088

  106. Love J., Björklund S., Vahala J., Hertzberg M., Kangasjärvi J., Sundberg B. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 5984. https://doi.org/10.1073/pnas.0811660106

  107. Bystrova E.I., Zhukovskaya N.V., Rakitin V.J. Ivanov V.B. Role of ethylene in activation of cell division in quiescent center of excised maize roots // Russ. J. Dev. Biol. 2015. V. 46. P. 60. https://doi.org/10.1134/S1062360415020034

  108. Etchells J.P., Provost C.M., Turner S.R. Plant vascular cell division is maintained by an interaction between PXY and ethylene signaling // PLoS Genet. 2012. V. 8. e1002997. https://doi.org/10.1371/journal.pgen.1002997

  109. Fomenkov A.A., Nosov A.V., Rakitin V.Y., Mamaeva A.S., Novikova G.V. Cytophysiological characteristics of Arabidopsis thaliana cultivated cells with disable perception of ethylene signal by the ETR1 receptor // Russ. J. Plant Physiol. 2014. V. 61. P. 598. https://doi.org/10.1134/S1021443714050070

  110. Fomenkov A.A., Nosov A.V., Rakitin V.Y., Sukhanova E.S., Mamaeva A.S., Sobol’kova G.I., Nosov A.M., Novikova G.V. Ethylene in the proliferation of cultured plant cells: regulating or just going along? // Russ. J. Plant Physiol. 2015. V. 62. P. 815. https://doi.org/10.1134/S1021443715060059

  111. Komaki S., Sugimoto K. Control of the plant cell cycle by developmental and environmental cues // Plant Cell Physiol. 2012. V. 53. P. 953. https://doi.org/10.1093/pcp/pcs070

  112. Velappan Y., Signorelli S., Considine M.J. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? // Ann. Bot. 2017. V. 120. P. 495. https://doi.org/10.1093/aob/mcx082

  113. Gutierrez C. The Arabidopsis cell division cycle // Arabidopsis Book. 2009. V. 7. e0120. https://doi.org/10.1199/tab.0120

Дополнительные материалы отсутствуют.