Физиология растений, 2023, T. 70, № 4, стр. 339-353

Использование наноматериалов как стратегия защиты растений от действия неблагоприятных температур

Ю. В. Венжик a*, А. Н. Дерябин a

a Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К. А. Тимирязева Российской академии наук
Москва, Россия

* E-mail: jul.venzhik@gmail.com

Поступила в редакцию 02.02.2023
После доработки 03.02.2023
Принята к публикации 03.02.2023

Аннотация

В условиях эскалации климатических угроз во всем мире растет необходимость разработки новых стратегий повышения стрессоустойчивости растений. Инновационные подходы в этом направлении предоставляют нанотехнологии, обеспечивающие производство разнообразных наноматериалов (НМ). К ним относят структуры размером менее 100 нм, обладающие уникальными физическими и химическими свойствами. Благодаря этому НМ способны проникать через биологические барьеры и накапливаться в клетках растений. Эффекты НМ на растительный организм могут быть как позитивными, так и негативными в зависимости от химической природы, размеров и концентраций НМ, объекта исследования и условий среды. Многие НМ в определенной концентрации способны регулировать практически все процессы в растительном организме: рост, водный обмен, активность фотосинтетического аппарата и про-/антиоксидантный баланс. Это позволяет предполагать возможность использования некоторых НМ как адаптогенов, усиливающих стрессоустойчивость растений. В настоящем обзоре представлен сравнительный анализ экспериментальных данных об использовании НМ в физиологии растений и сельском хозяйстве для защиты растений от действия неблагоприятных низких и высоких температур. Обсуждаются возможные механизмы действия НМ на растения, а также стратегия их дальнейшего использования в фундаментальной науке и сельском хозяйстве.

Ключевые слова: адаптация, высшие растения, наноматериалы, неблагоприятные температуры, стрессоустойчивость

Список литературы

  1. Ali Sh., Rizwan M., Arif M.S., Ahmad R., Hasanuzzaman M., Ali B., Hussain A. Approaches in enhancing thermotolerance in plants: an updated review // J. Plant Growth Regul. 2020. V. 39. P. 456. https://doi.org/10.1007/s00344-019-09994-x

  2. John R., Anjum N.A., Sopory S.K., Akram N.A., Ashraf M. Some key physiological and molecular processes of cold acclimation // Biol. Plant. 2016. V. 60. P. 603. https://doi.org/10.1007/s10535-016-0648-9

  3. Dev A., Srivastava A.K., Karmakar S. Nanomaterial toxicity for plants // Environ. Chem. Lett. 2018. V. 16. P. 85. https://doi.org/10.1007/s10311-017-0667-6

  4. Venzhik Yu.V., Moshkov I.E., Dykman L.A. Influence of nanoparticles of metals and their oxides on the photosynthetic apparatus of plants // Biol. Bull. 2021. V. 48. P. 140. https://doi.org/10.1134/S106235902102014X

  5. Sarraf M., Vishwakarma K., Kumar V., Arif N., Das S., Johnson R., Janeeshma E., Puthur J.T., Aliniaeifard S., Chauhan D.K., Fujita M. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms // Plants. 2022. V. 11. P. 316. https://doi.org/10.3390/plants11030316

  6. Khan M.N., Mobin M., Abbas Z.K., AlMutairi K.A., Siddiqui Z.H. Role of nanomaterials in plants under challenging environments // Plant Physiol. Biochem. 2017. V. 110. P. 194. https://doi.org/10.1016/j.plaphy.2016.05.038

  7. Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., ur Rehman M.Z., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat // Chemosphere. 2019. V. 214. P. 269. https://doi.org/10.1016/j.chemosphere.2018.09.120

  8. Mohammadi H., Amani-Ghadim A.R., Matin A.A., Ghorbanpour M. Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium // 3 Biotech. 2020. V. 10. P. 19. https://doi.org/10.1007/s13205-019-2002-3

  9. Bidi H., Fallah H., Niknejad Y., Tari D.B. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation // Plant Physiol. Biochem. 2021. V. 163. P. 348. https://doi.org/10.1016/j.plaphy.2021.04.020

  10. Latef A.A., Alhmad M.F., Abdelfattah K.E. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants // J. Plant Growth Regul. 2017. V. 36. P. 60. https://doi.org/0.1007/s00344-016-9618-x

  11. Mohamed A.K.S.H., Qayyum M.F., Abdel-Hadi Ah.M., Rehman R.A., Ali Sh., Rizwan M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat // Arch. Agron. Soil Sci. 2017. V. 63. P. 1736. https://doi.org/10.1080/03650340.2017.1300256

  12. Almutairi Z.M. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination // Int. J. Agric. Biol. 2016. V. 18. P. 449.

  13. Khodakovskaya M.V., de Silva K., Biris A.S., Dervishi E., Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells // ACS Nano. 2012. V. 6. P. 2128. https://doi.org/10.1021/nn204643g

  14. Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential // Nanoscale Res. Let. 2016. V. 11: 400. https://doi.org/10.1186/s11671-016-1607-2

  15. Ковалева Н.Ю., Раевская Е.Г., Рощин А.В. Проблемы безопасности наноматериалов: нанобезопасность, нанотоксикология, наноинформатика // Химическая безопасность. 2017. Т. 1. С. 44. https://doi.org/10.25514/CHS.2017.2.10982

  16. Tighe-Neira R., Carmorac E., Recioc G., Nunes-Nesid A., Reyes-Diaze M., Alberdie M., Rengelg Z., Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants // Plant Physiol. Biochem. 2018. V. 130. P. 408. https://doi.org/10.1016/j.plaphy.2018.07.024

  17. Zhao  L., Bai T., Wei H., Gardea-Torresdey J.L., Keller A., White J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience // Nature Food. 2022. V. 3. P. 829. https://doi.org/10.1038/s43016-022-00596-7

  18. Богатырев В.А., Дыкман Л.А., Хлебцов Н.Г. Методы синтеза наночастиц с плазмонным резонансом. Саратов: Саратовский государственный университет им. Н.Г. Чернышевского, 2009. 35 с.

  19. Rajput V.D., Minkina T.M., Behal A., Sushkova S.N., Mandzhieva S., Singh R., Gorovtsov A., Tsitsuashvili V.S., Purvis W.O., Ghazaryan K.A., Movsesyan H.S. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review // Environ. Nanotechnol. Monit. Manag. 2018. V. 9. P. 76. https://doi.org/10.1016/j.enmm.2017.12.006

  20. Ferrari E., Barbero F., Busquets-Fité M., Franz-Wachtel M., Köhler H.-R., Puntes V., Kemmerling B. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings // Nanomaterials. 2021. V. 11. P. 3161. https://doi.org/10.3390/nano11123161

  21. Трунова Т.И. Растение и низкотемпературный стресс. 64-е Тимирязевское чтение. Москва: Наука, 2007. 54 с.

  22. Theocharis A., Clément Ch., Barka E.A. Physiological and molecular changes in plants grown at low temperatures // Planta. 2012. V. 235. P. 1091. https://doi.org/10.1007/s00425-012-1641-y

  23. Kreslavski V.D., Los D.A., Allakhverdiev S.I., Kuznetsov V.V. Signaling role of reactive oxygen species in plants under stress // Russ. J. Plant Physiol. 2012. V. 59. P. 141. https://doi.org/10.1134/S1021443712020057

  24. Hurry V. Metabolic reprogramming in response to cold stress is like real estate, it’s all about location // Plant Cell Environ. 2017. V. 40. P. 599. https://doi.org/10.1111/pce.12923

  25. Ding Ya., Shi Yi., Yang Sh. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants // New Phytol. 2019. V. 222. P. 1690. https://doi.org/10.1111/nph.15696

  26. Fürtauer L., Weiszmann J., Weckwerth W., Nӓgele Th. Dynamics of plant metabolism during cold acclimation // Int. J. Mol. Sci. 2019. V. 20. P. 5411. https://doi.org/10.3390/ijms20215411

  27. Lukatkin A., Brazaitytė A., Bobinas Č., Duchovskis P. Chilling injury in chilling-sensitive plants: a review // Zemdirbyste-Agriculture. 2012. V. 99. P. 111.

  28. Brattacharya A. Physiological processes in plants under low temperature stress. Singapore: Springer Nature Singapore Pte Ltd., 2022. 734 p.

  29. Praźak R., Ṥwięciło A., Krzepiłko A., Michałek S., Arczewska M. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures // Agriculture. 2020. V. 10: 312. https://doi.org/10.3390/agriculture10080312

  30. Haghighi M., Abolghasemi R., Teixeira da Silva J.A. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment // Scientia Horticulturae. 2014. V. 178. P. 231. https://doi.org/10.1016/j.scienta.2014.09.006

  31. Wu H., Tito N. Giraldo J.P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species // ACS Nano. 2017. V. 11. P. 11283. https://doi.org/10.1021/acsnano.7b05723

  32. Azimi R., Borzelabad M.J., Feizi H., Azimi A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). // Pol. J. Chem. Tech. 2014. V. 16. P. 25. https://doi.org/10.2478/pjct-2014-0045

  33. Venzhik Yu., Deryabin A., Popov V., Dykman L., Moshkov I. Gold nanoparticles as adaptogens increasing the freezing tolerance of wheat seedlings // Environ. Sci. Poll. Res. 2022. V. 29. P. 5523. https://doi.org/10.1007/s11356-022-19759-x

  34. Venzhik Y.V., Deryabin A.N., Popov V.N., Dykman L.A., Titov A.F., Moshkov I.E. Influence of gold nanoparticles on the tolerance of wheat to low temperature // Dokl. Biochem. Biophys. 2022. V. 502. P. 5. https://doi.org/10.1134/S1607672922010100

  35. Ghabel V.K., Karamian R. Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress // Acta Bot. Croat. 2020. V. 79. P. 137. https://doi.org/10.37427/botcro-2020-025

  36. Wang A., Li J., Al-Huqail A.A., Al-Harbi M.S., Ali E.F., Wang J., Ding Z., Rekaby S.A., Ghoneim A.M., Eissa M.A. Mechanisms of chitosan nanoparticles in the regulation of cold sress resistance in banana plants // Nanomaterials. 2021. V. 11: 2670. https://doi.org/10.3390/nano11102670

  37. Mohammadi R., Maali-Amiri R., Abbasi A. Effect of TiO2 nanoparticles on chickpea response to cold stress // Biol. Trace Elem. Res. 2013. V. 152. P. 403. https://doi.org/10.1007/s12011-013-9631-x

  38. Mohammadi R., Maali-Amiri R., Mantri N. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress // Russ. J. Plant Physiol. 2014. V. 61. P. 768. https://doi.org/10.1134/S1021443714050124

  39. Song Y., Jiang M., Zhang H., Li R. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors // Molecules. 2021. V. 26. P. 2196. https://doi.org/10.3390/molecules26082196

  40. Lypez-Moreno M.L., de la Rosa G., Cruz-Jiménez G., Castellano L., Peralta-Videa J.R., Gardea-Torresdey J.L. Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies // Microchem. J. 2017. V. 134. P. 54. https://doi.org/10.1016/j.microc.2017.05.007

  41. Iqbal M., Iqbal Raja N., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. Effect of silver nanoparticles on growth of wheat under heat stress // Iran J. Sci. Technol. Trans Sci. 2019. V. 43. P. 387. https://doi.org/10.1007/s40995-017-0417-4

  42. Iqbal M., Iqbal Raja N., Mashwani Z.U.R., Wattoo F.H., Hussain M., Ejaz M., Saira H. Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L.) under heat stress // IET Nanobiotechnol. 2019. V. 13. P. 230. https://doi.org/10.1049/iet-nbt.2018.5041

  43. Shalaby T.A., Abd-Alkarim E., El-Aidy F., Hamed E.-S., Sharaf-Eldin M., Taha A., El-Ramady H., Bayoumi Y., Rodrigues dos Reis A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress // Ecotoxicol. Environ. Saf. 2021. V. 12: 111962. https://doi.org/10.1016/j.ecoenv.2021.111962

  44. Azmat A., Tanveer Y., Yasmin H., Hassan M.N., Shahzad A., Reddy M., Ahmad A. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants // Chemosphere. 2022. V. 297: 133982. https://doi.org/10.1016/j.chemosphere.2022.133982

  45. Kareem H.A., Hassan M.U., Zain M., Irshad I., Shakoor N., Saleem S., Niu J.U., Skalicky M., Chen Zh., Guo Zh., Wang Q. Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages // Environmental Pollution. 2022. V. 303: 119069. https://doi.org/10.1016/j.envpol.2022.119069

  46. Thakur S., Asthir B., Kaur G., Kalia A., Sharma A. Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat // Cereal Res. Commun. 2022. V. 50. P. 385. https://doi.org/10.1007/s42976-021-00190-w

  47. Qi M., Liu Yu., Li T. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress // Biol. Trace Elem. Res. 2013. V. 156. P. 323. https://doi.org/10.1007/s12011-013-9833-2

  48. Helal N.M., Khattab H.I., Emam M.M., Niedbała G., Wojciechowski T., Hammami I., Alabdallah N.M., Eldin Darwish D.B., El-Mogy M.M., Hassan H.M. Improving yield components and desirable eating quality of two wheat genotypes using Si and NanoSi particles under heat stress // Plants. 2022. V. 11: 1819. https://doi.org/10.3390/plants11141819

  49. Djanaguiraman M., Belliraj N., Bossmann S.H., Vara Prasad P.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain srghum // ACS Omega. 2018. V. 3. P. 2479. https://doi.org/10.1021/acsomega.7b01934

  50. Hassan N.S., Salah El Din T.A., Hendawey M.H., Borai I.H., Mahdi A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants // Current nanomaterials. 2018. V. 3. P. 32. https://doi.org/10.2174/2405461503666180619160923

  51. Zheng L., Hong F.S., Lu S.P., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach // Biol. Trace Elem. Res. 2005. V. 104. P. 83.

  52. Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth // ACS Nano. 2009. V. 3. P. 3221. https://doi.org/10.1021/nn900887m

  53. Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I., Zharov V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions // Proc. Natl. Acad. Sci. U. S. A. 2011. V. 108. P. 1028. https://doi.org/10.1073/pnas.1008856108

  54. Lahiani M.H., Dervishi E., Chen J., Nima Z., Gaume A., Biris A.S., Khodakovskaya M.V. Impact of carbon nanotube exposure to seeds of valuable crops // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 7965. https://doi.org/10.1021/am402052x

  55. Milewska-Hendel A., Witek W., Rypień A., Zubko M., Baranski R., Stróż D., Kurczyńska E.U. The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication // Sci. Rep. 2019. V. 9: 4724. https://doi.org/10.1038/s41598-019-41164-7

  56. Kumar V., Guleria P., Kumar V., Yadav S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana // Sci. Total Environ. 2013. V. 461. P. 462. https://doi.org/10.1016/j.scitotenv.2013.05.018

  57. Jalil S.U., Ansari M.I. Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms // Plant signaling molecule: role and regulation under stressful environments / Eds. Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A. Chennai: Elsevier, 2019. P. 549.

  58. Castiglione M.R., Giorgetti L., Cremonini R., Bottega S., Spanò C. Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects // Protoplasma. 2014. V. 251. P. 1471. https://doi.org/10.1007/s00709-014-0649-5

  59. Хлебцов Н.Г. Оптика и биофотоника частиц с плазмонным резонансом // Квантовая электроника. 2008. № 6. С. 504.

  60. Das S., Debnath N., Pradhan S., Goswami A. Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol – a nanobionic approach towards photosynthesis and plant primary growth augmentation // Gold Bull. 2017. V. 50. P. 247. https://doi.org/10.1007/s13404-017-0214-z

  61. Falco W.F., Botero E.R., Falcão E.A., Santiago E.F., Bagnato V.S., Caires A.R.L. In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles // J. Photochem. Photobiol. A. 2011. V. 225. P. 65. https://doi.org/10.1016/j.jphotochem.2011.09.027

  62. Torres R., Diz V., Lagorio M.G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts // Photochem. Photobiol. Sci. 2018. V. 17. P. 505. https://doi.org/10.1039/C8PP00067K

  63. Li X., Sun H., Mao X., Lao Y., Chen F. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles // ACS Sustainable Chem Eng. 2020. V. 8. P. 7600. https://doi.org/10.1021/acssuschemeng.0c00315

  64. Venzhik Yu., Deryabin A., Popov V., Dykman L., Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat // Plant Physiol. Biochem. 2022. V. 190. P. 145. https://doi.org/10.1016/j.plaphy.2022.09.006

  65. Hasanpour H., Maali-Amiri R., Zeinali H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea // Russ. J. Plant Physiol. 2015. V. 62. P. 779. https://doi.org/10.1134/S1021443715060096

  66. Hassan H., Alatawi A., Abdulmajeed A., Emam M., Khattab H. Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins // Horticulturae. 2021. V. 7: 16. https://doi.org/10.3390/horticulturae7020016

  67. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment // J. Phys. Chem. B. 2003. V. 107. P. 668. https://doi.org/10.1021/jp026731y

  68. Wei H., Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes // Chem. Sov. Rev. 2013. V. 42. P. 6060. https://doi.org/10.1039/C8CS00457A

  69. Liu Y., Xiao Z., Chen F., Yue L., Zou H., Lyu J., Wang Z. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect // Sci. Total. Environ. 2021. V. 780. P. 146578. https://doi.org/10.1016/j.scitotenv.2021.146578

  70. Kohan-Baghkheirati E., Geisler-Lee J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat // Nanomaterials. 2015. V. 5. P. 436. https://doi.org/10.3390/nano5020436

  71. Wu J., Wang T. Synergistic effect of zinc oxide nanoparticles and heat stress on the alleviation of transcriptional gene silencing in Arabidopsis thaliana // Bull. Environ. Contam. Toxicol. 2020. V. 104. P. 49. https://doi.org/10.1007/s00128-019-02749-0

  72. Mirzajani F., Askari H., Hamzelou S., Schober Y., Röompp A., Ghassempour A., Spengler B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. // Ecotoxicol. Environ. Saf. 2014. V. 108. P. 335. https://doi.org/10.1016/j.ecoenv.2014.07.013

  73. Miao Y., Xu J., Shen Y., Chen L., Bian Y., Hu Y., Zhou W., Zheng F., Man N., Shen Y., Zhang Y., Wang M., Wen L. Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals // ACS Nano. 2014. V. 8. P. 6131. https://doi.org/10.1021/nn501495a

  74. Чумаков Д.С., Соколов А.О., Богатырев В.А., Соколов О.И., Селиванов Н.Ю., Дыкман Л.А. “Зеленый” синтез наночастиц золота с использованием культур клеток Arabidopsis thaliana и Dunaliella salina // Российские нанотехнологии. 2018. Т. 13. С. 85.

  75. Singh A.K., Tiwari R., Singh V.K., Singh P., Khadim S.R., Singh U., Laxmia Srivastava V., Hasan S.H., Asthan R.K. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line // J. Drug Deliv. Sci. Technol. 2019. V. 51. P. 164. https://doi.org/10.1016/j.jddst.2019.02.023

  76. Iavicoli I., Leso V., Fontana L., Calabrese E.J. Nanoparticle exposure and hormetic dose-responses: an update // Int. J. Mol. Sci. 2018. V. 19: 805. https://doi.org/10.3390/ijms19030805

  77. Дыкман Л.А., Хлебцов Н.Г. Биомедицинское применение многофункциональных золотых нанокомпозитов // Успехи современной биологии. 2016. Т. 516. С. 411.

  78. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications. Boca Raton: CRC Press, 2017. 332 p.

  79. Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties // Adv. Colloid Interface Sci. 2019. V. 271: 101989. https://doi.org/10.1016/j.cis.2019.101989

  80. Pissuwan D., Poomrattanangoon R., Chungchaiyart P. Trends in using gold nanoparticles for inducing cell differentiation: a review // ACS Appl. Nano Mater. 2022. V. 5. P. 3110. https://doi.org/10.1021/acsanm.1c04173

  81. Gunjan B., Zaidi M.G.H., Sandeep A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea // J. Plant Biochem. Physiol. 2014. V. 2. P. 133. https://doi.org/10.4172/2329-9029.1000133

  82. Feichtmeier N.S., Walther P., Leopold K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles // Environ. Sci. Pollut. Res. 2015. V. 22. P. 8549. https://doi.org/10.1007/s11356-014-4015-0

  83. Hawthorne J., Musante C., Sinha S.K., White J.C. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo // Int. J. Phytoremediation. 2012. V. 14. P. 429. https://doi.org/10.1080/15226514.2011.620903

  84. Gopinath K., Gowri S., Karthika V., Arumugam A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba // J. Nanostruc. Chem. 2014. V. 4. P. 1. https://doi.org/10.1007/s40097-014-0115-0

  85. Barrena R., Casals E., Colón J., Font X., Sánchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles // Chemosphere. 2009. V. 75. P. 850. https://doi.org/10.1016/j.chemosphere.2009.01.078

  86. Ndeh N.T., Maensiri S., Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017. V. 8: 035008.

Дополнительные материалы отсутствуют.