Геохимия, 2022, T. 67, № 8, стр. 717-740

Физико-химические параметры и геохимические особенности флюидов кайнозойских золоторудных месторождений

В. Ю. Прокофьев a*, В. Б. Наумов b**, О. Ф. Миронова b

a Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН
119017 Москва, Старомонетный пер., 35, Россия

b Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: vpr@igem.ru
** E-mail: naumov@geokhi.ru

Поступила в редакцию 29.07.2021
После доработки 08.11.2021
Принята к публикации 15.12.2021

Аннотация

Завершено обобщение литературных данных о физико-химических параметрах и особенностях химического состава флюидов золоторудных эндогенных месторождений. Оценены средние величины и пределы вариаций температур (50–845°С, среднее 290°С), давлений (20–3600 бар, среднее 600 бар) и солености (0.1–88.0 мас. % экв. NaCl, среднее 13.1 мас. % экв. NaCl) флюидов кайнозойских месторождений золота. Выявлены особенности газового состава рудообразующих флюидов этих месторождений. Параметры минералообразующих флюидов кайнозойских месторождений золота рассмотрены в сравнении с аналогичными параметрами флюидов архейских, протерозойских, палеозойских и мезозойских месторождений золота. Установлено закономерное изменение химического состава и параметров минералообразующих флюидов месторождений золота во времени. Кайнозойские месторождения золота в целом отличались от более древних более высокой температурой и соленостью флюида, более низким давлением и наиболее высокой величиной отношения CO2/CH4. Уменьшение величины флюидного давления от древних месторождений золота к молодым может быть связано с разной степенью эродированности древних и молодых рудообразующих систем.

Ключевые слова: месторождения золота, кайнозой, флюидные включения, физико-химические параметры, минералообразующие флюиды, крупные и суперкрупные месторождения

Список литературы

  1. Боровиков А.А., Лапухов А.С., Борисенко А.С., Сереткин Ю.В. (2009) Физико-химические условия формирования эпитермального Асачинского Au–Ag месторождения (Южная Камчатка). Геология и геофизика. 50, 897-903.

  2. Горячев Н.А. Месторождения золота в истории Земли. (2019) Геология рудных месторождений. 61(6), 3-18.

  3. Коваленкер В.А., Наумов В.Б., Прокофьев В.Ю., Елень С., Габер М. (2006) Состав магматических расплавов и эволюция минералообразующих флюидов эпитермального Au–Ag–Pb–Zn месторождения Банска Штьявница (Словакия) по данным исследования включений в минералах. Геохимия. (2), 141-160.

  4. Kovalenker V.A., Naumov V.B., Prokof’ev V.Yu., Jelen S., Gaber M. (2006) Compositions of magmatic melts and evolution of mineral-forming fluids in the Banska Stiavnica epithermal Au–Ag–Pb–Zn deposit, Slovakia: A study of inclusions in minerals. Geochem. Int. 44(2), 118-136.

  5. Миронова О.Ф. (2010) Летучие компоненты природных флюидов по данным изучения включений в минералах: методы и результаты. Геохимия. (1), 89-97.

  6. Mironova O.F. (2010) Volatile components of natural fluids: Evidence from inclusions in minerals: methods and results. Geochem. Int. 48(1), 83-90.

  7. Миронова О.Ф., Салазкин А.Н., Наумов В.Б. (1995) Валовые и точечные методы в анализе летучих компонентов флюидных включений. Геохимия. 974-984.

  8. Наумов В.Б., Дорофеева В.А., Миронова О.Ф. (2009) Основные физико-химические параметры природных минералообразующих флюидов. Геохимия. (8), 825-851.

  9. Naumov V.B., Dorofeeva V.A., Mironova O.F. (2009) Principal physicochemical parameters of natural mineral-forming fluids. Geochem. Int. 47(8), 777-802.

  10. Прокофьев В.Ю. (1998) Типы гидротермальных рудообразующих систем (по данным исследования флюидных включений). Геология рудных месторождений. (6), 514-528.

  11. Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2017) Физико-химические параметры и геохимические особенности флюидов докембрийских золоторудных месторождений. Геохимия. (12), 1069-1087.

  12. Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2017) Physicochemical parameters and geochemical features of fluids of Precamrbian gold deposits. Geochem. Int. 55(12), 1047-1065.

  13. Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2018) Физико-химические параметры и геохимические особенности флюидов палеозойских золоторудных месторождений. Геохимия. (12), 1141-1157.

  14. Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2018) Physicochemical parameters and geochemical features of fluids of Paleozoic gold deposits. Geochem. Int. 56(12), 1156-1171.

  15. Прокофьев В.Ю., Наумов В.Б., Миронова О.Ф. (2020) Физико-химические параметры и геохимические особенности флюидов мезозойских золоторудных месторождений. Геохимия. 65(2), 123-144.

  16. Prokofiev V.Yu., Naumov V.B., Mironova O.F. (2020) Physicochemical parameters and geochemical features of fluids of Mesozoic gold deposits. Geochem. Int. 58(2), 128-150.

  17. Alipour-Asll M. (2019) Geochemistry, fluid inclusions and sulfur isotopes of the Govin epithermal Cu-Au mineralization, Kerman province, SE Iran. J. Geochem. Explor. 196, 156-172.

  18. Andre A.S., Leroy J.L. (1999) Fluid inclusions and microfissuration data on the epithermal Au-Ag ore deposits in the Cordillera Shila, southern Peru. Terra Nostra: ECROFI XV – Abstr. and Program, 7-9.

  19. Andre-Mayer A.-S., Leroy J.L., Bailly L., Chauvet A., Marcoux E., Grancea L., Llosa F., Rosas J. (2002) Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Mineral. Dep. 37(5), 452-464.

  20. Andreeva E.D., Matsueda H., Okrugin V.M., Takahashi R., Ono Sh. (2013) Au–Ag–Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Res. Geol. 63, 337-349.

  21. Beaty D.W., Cunninghem C.G., Rye R.O., Steven T.A., Gonzalez-Urien E. (1986) Geology and geochemistry of the Deer Trail Pb–Zn–Ag–Au–Cu Manto deposits, Marysvale district, West-Central Utah. Econ. Geol. 81, 1932-1952.

  22. Bethke P.M., Rye R.O., Stoffregen R.E., Vikre P.G. (2005) Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope, and fluid-inclusion evidence. Chem. Geol. 215, 281-315.

  23. Bodnar R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusions fluids. Econ. Geol. 78, 535-542.

  24. Bodnar R.J. (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim. Cosmochim. Acta. 57, 683-684.

  25. Bozkaya G., Banks D. (2015) Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey. Ore Geol. Rev. 66, 65-81.

  26. Bozkaya G., Bozkaya Ö., Banks D.A., Gökçe A. (2020) P‑T-X constraints on the Koru epithermal base-metal (±Au) deposit, Biga Peninsula, NW Turkey. Ore Geol. Rev. 119, 103349.

  27. Brown, P.E. (1989) Flincor: A microcomputer program for the reduction and investigation of fluid inclusion data. Am. Mineral. 74, 1390-1393.

  28. Camprubi A., Gonzalez-Partida E., Iriondo A., Levresse G. (2006) Mineralogy, fluid characteristics, and depositional environment of the Paleocene epithermal Au-Ag deposits of the El Barqueno district, Jalisco, Mexico. Econ. Geol. 101, 235-247.

  29. Chauvet A., Bailly L., Andre A.-S., Monie P., Cassard D., Tajada F.L., Vargas J.R., Tuduri J. (2006) Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru. Mineral. Deposita. 41, 387-410.

  30. Christie A.B., Simpson M.P., Brathwaite R.L., Mauk J.L., Simmons S.F. (2007) Epithermal Au-Ag and related deposits of the Hauraki goldfield, Coromandel volcanic zone, New Zealand. Econ. Geol. 102, 785-816.

  31. Cocker H.A., Mauk J.L., Rabone S.D.C. (2013) The origin of Ag–Au–S–Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. Mineral. Deposita. 48, 249-266.

  32. Corral I., Cardellach E., Corbella M., Canals A., Griera A., Gómez-Gras D., Johnson C.A. (2017) Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au–Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective. Ore Geol. Rev. 80, 947-960.

  33. Craw, D. (1992) Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand. Chem. Geol. 98, 221-236.

  34. Craw D., Teagle D.A.H., Belocky R. (1993) Fluid immiscibility in late-Alpine gold-bearing veins, Eastern and Northwestern European Alps. Mineral. Deposita. 28, 28-36.

  35. D’Annunzioa M.C., Rubinstein N. (2019) The Quebrada del Diablo Lower West Au deposit (Gualcamayo mining district, Argentina): A Carlin-type mineralization? J. South Amer. Earth Sci. 92, 95-106.

  36. Davies A.G.S., Cooke D.R., Gemmell J.B. (2008) Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit. Econ. Geol. 103, 717-757.

  37. De Ronde C.E.J., Blattner P. (1988) Hydrothermal alteration, stable isotopes, and fluid inclusions of the Golden Cross epithermal gold-silver deposit, Waihi, New Zealand. Econ. Geol. 83, 895-917.

  38. Dhamelincourt P., Beny J.-M., Dubessy J., Poty B. (1979) Analyse d’inclusions fluides a la microsonde MOLE a effet Raman. Bull. Mineral. 102, 600-610.

  39. Diamond L.W. (1990) Fluid inclusions evidence for P-V-T-X evolution hydrothermal solutions in late-alpine gold-quartz veins at Brusson, Val d’Ayas, Northwest Italian Alps. Amer. J. Sci. 290, 912-958.

  40. Frias S.M.P., Imai A., Takahashi R., Balangue-Tarriela M.I.R., Arcilla C., Blamey N. (2019) Geology, alteration, and mineralization of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines. Res. Geol. 69, 351-384.

  41. Frimmel H.E., Groves D.I., Kirk J., Ruiz J., Chesley J., Minter W.E.L. (2005) The Formation and Preservation of the Witwatersrand Goldfields, the World’s Largest Gold Province. Economic Geology 100th Anniversary Volume. 769-797.

  42. Ge L.S., Deng J., Li H.G., Yang L.Q., Zhang W.Z., Yuan S.S., Xing J.B. (2007) Superposed mineralization in Daping Au–Cu–Ag–Pb deposit, Yunnan province: Evidences from geology, fluid inclusion and stable isotopes. Acta Petrol. Sinica. 23, 2131-2143.

  43. Goldfarb R.J., Leach D.L., Miller M.L., Pickthorn W.J. (1986) Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska: Geolog. Assoc. Canada Special Paper. 32, 87-105.

  44. Goldfarb R.J., Leach D.L., Rose S.C., Landis G.P. (1989) Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska – implications for ore genesis. Econ. Geol. Monograph. 6, 363-375.

  45. Groff J.A. (2018) Distinguishing generations of quartz and a distinct gas signature of deep high-grade Carlin-type gold mineralization using quadrupole mass spectrometry. Ore Geol. Rev. 95, 518-536.

  46. Groff J.A. (2019) Evidence of boiling and epithermal vein mineralization in Carlin-type deposits on the Getchell trend, Nevada. Ore Geol. Rev. 106, 340-350.

  47. Groff J.A., Campbell A.R., Norman D.I. (2002) An evaluation of fluid inclusion microthermometric data for orpiment-realgar-calcite-barite-gold mineralization at the Betze and Carlin mines, Nevada. Econ. Geol. 97, 1341-1346.

  48. Gropper H., Calvo M., Crespo H., Bisso C.R., Cuadra W.A., Dunkerley P.M., Aguirre E. (1991) The epithermal gold-silver deposit of Choquelimpie, Northern Chile. Econ. Geol. 86, 1206-1221.

  49. Hakim A.Y.A., Melcher F., Prochaska W., Bakker R., Rantitsch G. (2018) Formation of epizonal gold mineralization within the Latimojong Metamorphic Complex, Sulawesi, Indonesia: Evidence from mineralogy, fluid inclusions and Raman spectroscopy. Ore Geol. Rev. 97, 88-108.

  50. Hanilçi N., Bozkaya G., Banks D.A., Bozkaya O., Prokofiev V., Öztaş Y. (2020) Fluid inclusion characteristics of the Kışladağ porphyry Au deposit, Western Turkey. Minerals 10, 64, 1-16.

  51. Harris A.C., Kamenetsky V.S., White N.C., van Achterbergh E., Ryan C.G. (2003) Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science. 302(5653), 2109-2111.

  52. Harris A.C., Kamenetsky V.S., White N.C., Steele D.A. (2004) Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geol. 54, 341-356.

  53. He W., Yang L., Brugger J., Campbell Mc C.T.C., Luc Y., Bao X., Gao X., Lua Y., Xing Y. (2017) Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes. Ore Geol. Rev. 90, 847-862.

  54. Hedenquist J.W., Arribas A.J., Reynolds T.J. (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 93, 373-404.

  55. Hedenquist J.W., Matsuhisa Y., Izawa E., White N.C., Giggenbach W.F., Akiro M. (1994) Geology, geochemistry and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Econ. Geol. 89, 1-30.

  56. Imer E.U., Gulec N., Kuscu I., Fallick A.E. (2013) Genetic investigation and comparison of Kartaldag and Madendag epithermal gold deposits in Canakkale, NW Turkey. Ore Geol. Rev. 53, 204-222.

  57. Jewell P.W., Parry W.T. (1988) Geochemistry of the Mercur gold deposit (Utah, USA). Chem. Geol. 69, 245-265.

  58. Jiang S.H., Nie F.J., Hu P., Lai X.R., Liu Y.F. (2009) Mayum: an orogenic gold deposit in Tibet, China Ore Geology Reviews. 36(1–3), 160-173.

  59. Johnson T.W., Meinert L.D. (1994) Au-Cu-Ag skarn and replacement mineralization in the McLaren deposit, New World district, Park County, Montana. Econ. Geol. 89, 969-993.

  60. Johnson T.W., Thompson T.B. (2006) Breccia- and carbonate-hosted Au–Cu–Ag replacement mineralization associated with the Homestake porphyry intrusive complex, New World district, Montana. Econ. Geol. 101, 955-980.

  61. Johnston M.K., Thompson T.B., Emmons D.L., Jones K. (2008) Geology of the Cove mine, Lander County, Nevada, and a genetic model for the McCoy-Cove hydrothermal system. Econ. Geol. 103, 759-782.

  62. Kamilli R.J., Ohmoto H. (1977) Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia vein, Colqui district, Central Peru. Econ. Geol. 72, 950-982.

  63. Karimpour M.H., Shafaroudi A.M., Bajestani A.M., Schader R.K., Stern Ch.R., Farmer L., Sadeghi M. (2017) Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit. J. Geochem. Explor. 183, 58-78.

  64. Kekelia S.A., Kekelia M.A., Kuloshvili S.I., Sadradze N.G., Gagnidze N.E., Yaroshevich V.Z., Asatiani G.G., Doebrich J.L., Goldfarb R.J., Marsh E.E. (2008) Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: Their genesis and prospecting criteria. Ore Geol. Rev. 34, 369-386.

  65. Kelson C.R., Crowe D.E., Stein H.J. (2008) Geochemical and geochronological constraints on mineralization within the Hilltop, Lewis, and Bullion mining district, Battle Mountain-Eureka trend, Nevada. Econ. Geol. 103, 1483-1506.

  66. Kesler S.E., Wilkinson B.H. (2006) The role of exhumation in the temporal distribution of ore deposits. Econ. Geol. 101, 919-922.

  67. Kodera P., Lexa J., Rankin A.H., Fallik A.E. (2005) Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia. Mineral. Deposita. 39, 921-943.

  68. Kouhestani H., Ghaderi M., Chang Zh., Zaw Kh. (2015) Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au–Ag deposit, Iran: Fluid inclusions and stable isotope studies. Ore Geol. Rev. 65, 512-521.

  69. Kouhestani H., Mokhtari M.A.A., Chang Zh., Stein H.J., Johnson C.A. (2018) Timing and genesis of ore formation in the Qarachilar Cu–Mo–Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: Evidence from geology, fluid inclusions, O–S isotopes and Re–Os geochronology. Ore Geol. Rev. 102, 757-775.

  70. Lattanzi P.F., Curti E., Bastogi M. (1989) Fluid inclusions studies on the gold deposits on the Upper Anzasca Valley, Northwestern Alps, Italy. Econ. Geol. 84, 1382-1397.

  71. Leitch C.H.B., Godwin C.I., Brown T.H., Taylor B.E. (1991) Geochemistry of mineralizing fluids in the Bralorne-Pioneer mesothermal gold vein deposit, British Columbia, Canada. Econ. Geol. 86, 318-353.

  72. Li G.M., Qin K.Z., Ding K.S., Liu T.B., Li J.X., Wang S.H., Jiang S.Y., Zhang X.C. (2006) Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu–Au+/–Mo deposits in the Southeastern Gangdese arc, Southern Tibet: implications for deep exploration. Res. Geol. 56, 315-336.

  73. Lindblom S. (1991) Organic matter and gold deposition in disseminated gold deposits in Nevada. Source, Transport and Deposition of Metals, Balkema, Rotterdam, 553-556.

  74. Liu H., Bi X., Lu H., Hu R., Lan T., Wang X., Huang M. (2018) Nature and evolution of fluid inclusions in the Cenozoic Beiya gold deposit, SW China. J. Asian Earth Sci. 161, 35-56.

  75. Majzlan J., Berkh Kh., Kiefer S., Koděra P., Fallick A.E., Chovan M., Bakos F., Biroň A., Ferenc S., Lexa J. (2018) Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia. Miner Petrol. 112, 1-23.

  76. Mancano D.P., Campbell A.R. (1995) Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu–Au deposit. Geochim. Cosmochim. Acta. 59, 3909-3916.

  77. Márquez-Zavalía M.F., Heinrich C.A. (2016) Fluid evolution in a volcanic-hosted epithermal carbonate–base metal–gold vein system: Alto de la Blenda, Farallón Negro, Argentina. Mineral. Deposita. 51, 873-902.

  78. Mernagh T., Mavrogenes J. (2019) Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit. Chem. Geol. 508, 210-224.

  79. Mernagh T.P., Leys C., Henley R.W. (2020) Fluid inclusion systematics in porphyry copper deposits: The super-giant Grasberg deposit, Indonesia, as a case study. Ore Geol. Rev. 123, 103570.

  80. Milesi J.P., Marcoux E., Sitorus T., Simandjuntak M., Leroy J., Bailly L. (1999) Pongkor (west Java, Indonesia): a Pliocene supergene-enriched epithermal Au–Ag–Mn) deposit. Mineral. Deposita. 34, 131-149.

  81. Miller L.D., Goldfarb R.J., Snee L.W., Cent C.A., Kirkham R.A. (1995) Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay District, Southeast Alaska. Econ. Geol. 90, 343-368.

  82. Millonig L.J., Beinlich A., Raudsepp M., Fionnuala F., Archibald D.A., Linnen R.L., Groat L.A. (2017) The Engineer mine, British Columbia: An example of epithermal Au-Ag mineralization with mixed alkaline and subalkaline characteristics. Ore Geol. Rev. 83, 235-257.

  83. Mo R.W., Sun X.M., Zhai W., Zhou F., Liang Y.H. (2013) Ore-forming fluid geochemistry and metallogenic mechanism from Mazhala gold-antimony deposit in southern Tibet, China. Acta Petrol. Sinica. 29, 1427-1438.

  84. Molnar F. (1991) Temporal and spatial evolution of hydrothermal fluids in the Au–Ag ore deposit of Telkibanya (Tokaj Mts, NE-Hungary). Abstr. XI Symposium ECROFI, Firenze, 149-150.

  85. Moncada D., Baker D., Bodnar R.J. (2017) Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geol. Rev. 89, 143-179.

  86. Moor W.J., Nash J.T. (1974) Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah. Econ. Geol. 69, 631-645.

  87. Moritz R., Ghasban F., Singer B.S. (2006) Eocene gold ore formation at Muteh, Sanandaj-Sirjan Tectonic Zone, Western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen. Econ. Geol. 101, 1497-1524.

  88. Moussa N., Boiron M.C., Grassineau N.V., Asael D., Fouquet Y., Le Gall B., Rolet R., Etoubleau J., Delacourt C. (2019) Mineralogy, fluid inclusions and stable isotope study of epithermal Au–Ag–Bi–Te mineralization from the SE Afar Rift (Djibouti). Ore Geol. Rev. 111, 102916.

  89. Munoz C., Fontbote L. (1991) Fluid inclusion and trace element data on the Azulcocha Zn–As–Au) ore deposit, central Peru. Terra abstr. 3, 413-414.

  90. Nash J.T. (1972) Fluid inclusion studies of some gold deposits in Nevada. U.S. Geol. Survey Prof. Paper, 800.

  91. Nash J.T., Cunningham Jr. (1973) Fluid-inclusion studies of the fluorspar and gold deposits, Jamestown district, Colorado. Econ. Geol. 68, 1247-1262.

  92. Nash J.T., Theodore T.G. (1971) Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada. Econ. Geol. 66, 385-399.

  93. O’Neil J.R., Silberman M.L., Fabbi B.P., Chesterman C.W. (1973) Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California. Econ. Geol. 68, 765-784.

  94. O’Neil J.R., Silberman M.L. (1974) Stable isotope relations in epithermal Au-Ag deposits. Econ. Geol. 69, 902-909.

  95. Padyar F., Rahgoshay M., Tarantola A., Caumon M.-C., Pourmoafi S.M. (2020) High f H2 – f S2 conditions associated with sphalerite in Latala epithermal base and precious metal deposit, Central Iran: Implications for the composition and genesis conditions of sphalerite. J. Earth Sci. 31, 523-535.

  96. Prokofiev V.Yu., Naumov V.B. (2020) Physicochemical Parameters and Geochemical Features of Ore-Forming Fluids for Orogenic Gold Deposits Throughout Geological Time. Minerals. 10(1), 50.

  97. Pudack C., Halter W.E., Heinrich C.A., Pettke T. (2009) Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina. Econ. Geol. 104, 449-477.

  98. Radtke A.S., Rye R.O., Dickson F.W. (1980) Geology and stable isotope studies of Carlin gold deposit, Nevada. Econ. Geol. 75, 641-672.

  99. Rivai T.A., Yonezu K., Syafrizai K., Sanematsu K., Kusumanto D., Imai A., Watanabe A.A. (2019) Low-sulfidation epithermal mineralization in the River Reef Zone, the Poboya Prospect, Central Sulawesi, Indonesia: Vein textures, ore mineralogy, and fluid inclusions. Res. Geol. 69, 385-401.

  100. Roedder E. (1971) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 66, 98-120.

  101. Ruiz, F.J.Q. (2008) La Herradura ore deposit: an orogenic gold deposit in Northwestern Mexico. Thesis of the requirements for the degree of master of sciences. University of Arisona. 97p.

  102. Saing S., Takanashi R., Imai A. (2016) Fluid inclusion and stable isotope study at the Southeastern Martabe deposit: Purnama, Barani and Horas ore bodies, North Sumatra, Indonesia. Res. Geol. 66, 127-148.

  103. Seo J.H., Guillong M., Heinrich C.A. (2012) Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Econ. Geol. 107, 333-356.

  104. Sherlock R.L., Tosdal R.M., Lehrman N.J., Graney J.R., Losh S., Jowett E.C., Kesler S.E. (1995) Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion, and isotopic evidence. Econ. Geol. 90, 2156-2181.

  105. Shimizu T. (2018) Fluid inclusion studies of comb quartz and stibnite at the Hishikari Au–Ag epithermal deposit, Japan. Res. Geol. 68, 326-335.

  106. Shimizu T., Matsueda H., Ishiyama D., Matsubaya O. (1998) Genesis of epithermal Au–Ag mineralization of the Koryu mine, Hokkaido, Japan. Econ. Geol. 93, 303-325.

  107. Siahcheshm K., Calagari A.A., Abedini A. (2014) Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: Evidence from fluid inclusions. Ore Geol. Rev. 58, 1-13.

  108. Simmons S.F., Arehart G., Simpson M.P., Mauk J.L. (2000) Origin of massive calcite-veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand. Econ. Geol. 95, 99-112.

  109. Simpson M.P., Mauk J.L. (2011) Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand. Econ. Geol. 106, 945-973.

  110. Spry P.G. (1987) A fluid inclusion and sulfur isotope study of precious and base metal mineralization spatially associated with the Patch and Gold Cup breccia pipes, Central City, Colorado. Econ. Geol. 82, 1632-1639.

  111. Sun X.M., Zhang Y., Xiong D.X., Sun W.D., Shi G.Y., Zhai W., Wang S.W. (2009) Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geol. Rev. 36, 235-249.

  112. Sun X.M., Wei H.X., Zhai W., Shi G.Y., Liang Y.H., Mo R.W., Han M.X., Zhang X.G. (2010) Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China. Acta Petrol. Sinica. 26, 1672-1684.

  113. Sun X., Wei H., Zhai W., Shi G., Liang Y., Mo R., Han M., Yi J., Zhang X. (2016) Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geol. Rev. 74, 196-210.

  114. Syafrizal Imai A., Motomura Y., Watanabe K. (2005) Characteristics of gold mineralization at the Ciurug vein, Pongkor gold-silver deposits, West Java, Indonesia. Res. Geol. 55, 225-238.

  115. Taghipour B., Ahmadnejad F. (2015) Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran). Geologos. 21(1), 31-57.

  116. Takahashi R., Matsueda H., Okrugin V.M., Ono S. (2006) Polymetallic and Au-Ag mineralizations at the Mutnovskoe deposit in South Kamchatka, Russia. Res. Geol. 56, 141-156.

  117. Takahashi R., Tagiri R., Blamey N.J.F., Imai A., Watanabe Y., Takeuchi A. (2017) Characteristics and behavior of hydrothermal fluids for gold mineralization at the Hishikari deposits, Kyushu, Japan. Res. Geol. 67, 279-299.

  118. Tombros S.F., Seymour K.St., Williams-Jones A.E., Spry P.G. (2008) Later stages of evolution of an epithermal system: Au–Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece. Mineral. Petrol. 94, 175-194.

  119. Tuakia M.Z., Takahashi R., Imai A. (2019) Geological and geochemical characteristics of gold mineralization in the Salu Bulo Prospect, Sulawesi, Indonesia. Res. Geol. 69(2), 175-192.

  120. Tuysuz N., Sadiklar B., Er M., Yilmaz Z. (1995) An epithermal gold-silver deposit in the Pontide island arc, Mastra Gumushane, Northeast Turkey. Econ. Geol. 90, 1301-1309.

  121. Vikre P.G. (1989a) Fluid-mineral relations in the Comstock lode. Econ. Geol. 84, 1574-1613.

  122. Vikre P.G. (1989b) Ledge formation at the Sandstorm and Kendall gold mines, Goldfield, Nevada. Econ. Geol. 84, 2115-2138.

  123. Vivian G., Morton R.D., Changkakoti A., Gray J. (1987) Blackdome Eocene epithermal Ag-Au deposit, British Columbia, Canada – Nature of ore fluids. Trans. Inst. Min. Metall. 96, Sec. B, B9-B14.

  124. Wallier S., Rey R., Kouzmanov K., Pettke T., Heinrich C.A., Leary S., O’Connor G., Tamas C.G., Vennemann T., Ullrich T. (2006) Magmatic fluids in the breccia-hosted epithermal Au–Ag deposit of Rosia Montana, Romania. Econ. Geol. 101, 923-954.

  125. Walton L.A. (1987) Geology and Geochemistry of the Venus Au–Ag–Pb–Zn Deposit, Yukon Territory. Thesis of Master of Science. Edmonton, Alberta, 113.

  126. Wang D., Bi X., Lu H., Hu R., Wang X., Xu L. (2018) Fluid and melt inclusion study on mineralized and barren porphyries, Jinshajiang-Red River alkali-rich intrusive belt, and significance to metallogenesis. J. Geochem. Explor. 184, 28-39.

  127. Wang J.H., Li W.C., Wang K.Y., Yin G.H., Wu S., Jiang W.T. (2015) The characteristics and evolution of the ore-forming fluids in the Beiya porphyry Au-polymetallic deposit, western Yunnan. Acta Petrolog. Sinica. 31, 3269-3280.

  128. Warmada I.W., Lehmann B., Simandjuntak M., Hemes H.S. (2007) Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, west Java, Indonesia. Res. Geol. 57, 124-135.

  129. Wilson M.R., Kyser T.K. (1988) Geochemistry of porphyry-hosted Au-Ag deposits in the Little Rocky Mountains, Montana. Econ. Geol. 83, 1329-1346.

  130. Xu W.Y., Pan F.C., Qu X.M., Hou Z.Q., Yang Z.S., Chen W.S., Yang D., Cui Y. (2009) Xiongcun, Tibet: A telescoped system of veinlet-disseminated Cu (Au) mineralization and late vein-style Au (Ag)-polymetallic mineralization in a continental collision zone. Ore Geol. Rev. 36, 174-193.

  131. Xu X.-W., Cai X.-P., Xiao Q.-B., Peters S.G. (2007) Porphyry Cu-Au and associated polymetallic Fe–Cu–Au deposits in the Beiya area, western Yunnan Province, south China. Ore Geol. Rev. 31, 224-246.

  132. Yilmaz H., Oyman T., Arehart G.B., Colakoglu A.R., Billor Z. (2007) Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey. Ore Geol. Rev. 32, 81-124.

  133. Zamanian H., Rahmani Sh., Zareisahameih R. (2019) Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu-Au deposit in Zanjan Province, NW Iran: Implications for ore genesis. Ore Geol. Rev. 112, 103014.

  134. Zhai W., Suna X., Yi J., Zhang X., Mo R., Zhou F., Wei H., Zeng Q. (2014) Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol. Rev. 58, 68-90.

  135. Zhang X., Nesbitt B.E., Muehlenbachs K. (1989) Gold mineralization in the Okanagan Valley, southern British Columbia: fluid inclusion and stable isotope studies. Econ. Geol. 84, 410-424.

  136. Zhang X., Spry P.C. (1994) Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana. Econ. Geol. 89, 602-627.

  137. Zhang X., Nesbitt B.E., Muehlenbachs K. (1989) Gold mineralization in the Okanagan Valley, southern British Columbia: fluid inclusion and stable isotope studies. Econ. Geol. 84, 410-424.

  138. Zheng Ch., Zhang Zh., Wu Ch., Yao J. (2017) Genesis of the Ciemas gold deposit and relationship with epithermal deposits in West Java, Indonesia: Constraints from fluid inclusions and stable isotopes. Acta Geol. Sinica (English edition). 91(3), 1025-1040.

  139. Zhou F., Sun X.M., Zhai W., Liang Y.H., Wei H.X., Mo R.W., Zhang X.G., Yi J.Z. (2011) Geochemistry of ore-forming fluid and metallogenic mechanism for Zhemulang gold deposit in southern Tibet, China. Acta Petrol. Sinica. 27, 2775-2785.

Дополнительные материалы отсутствуют.