Геохимия, 2023, T. 68, № 7, стр. 730-736

Микроволновая пробоподготовка геологических образцов в UltraWAVE для определения элементов платиновой группы и рения изотопным разбавлением с масс-спектрометрическим окончанием

С. В. Палесский a*, И. В. Николаева a, О. А. Козьменко a

a Институт геологии и минералогии им. В.С. Соболева СО РАН
630090 Новосибирск, проспект академика Коптюга, 3, Россия

* E-mail: stas@igm.nsc.ru

Поступила в редакцию 24.01.2023
После доработки 27.02.2023
Принята к публикации 27.02.2023

Аннотация

В статье представлены первые результаты применения микроволновой системы реакторного типа UltraWAVE для пробоподготовки геологических образцов при температуре 250°C и давлении 82 бар с использованием смеси концентрированных азотной и соляной кислот (3 : 1). Определение элементов платиновой группы – Ru, Pd, Ir, Pt и Re после кислотного выщелачивания выполнено изотопным разбавлением с масс-спектрометрическим окончанием на приборе высокого разрешения ELEMENT после отделения аналитов ионообменной хроматографией на катионите AG50Wx8. Определение моноизотопного родия проведено с использованием 195Pt в качестве внутреннего стандарта. Достигнутые пределы обнаружения составляют от 0.003 нг/г (Ir) до 0.09 нг/г (Pt). Правильность определения ЭПГ и рения подтверждена на основе анализа международных стандартных образцов состава – GP-13, UB-N, BHVO-2. Предлагаемый подход значительно ускоряет и упрощает процедуру пробоподготовки геологических образцов для определения ЭПГ и рения по сравнению с использованием трубок Кариуса.

Ключевые слова: масс-спектрометрия с индуктивно-связанной плазмой (МС-ИСП), изотопное разбавление (ИР), элементы платиновой группы (ЭПГ) и Re, микроволновая система UltraWAVE, трубки Кариуса (ТК)

Список литературы

  1. Гребнева-Балюк О.Н., Кубракова И.В. (2020) Определение элементов платиновой группы в геологических объектах методом масс-спектрометрии с индуктивно связанной плазмой: возможности и ограничения. Журнал аналитической химии. 75(3), 195-208.

  2. Козьменко О.А., Палесский С.В., Николаева И.В., Томас В.Г., Аношин Г.Н. (2011) Усовершенствование методики химической подготовки геологических образцов в трубках Кариуса для определения элементов платиновой группы и рения. Аналитика и контроль. 15(4), 378-385.

  3. Кубракова И.В., Набиуллина С.Н., Тютюнник О.А. (2020) Определение ЭПГ и золота в геохимических объектах: опыт использования спектрометрических методов. Геохимия. 65(4), 328-342.

  4. Kubrakova I.V., Nabiullina S.N., Tyutyunnik O.A. (2020) Au and PGE Determination in Geochemical Materials: Experience in Applying Spectrometric Techniques. Geochem. Int. 58(4), 377-390.

  5. Кубракова И.В., Торопченова Е.С. (2013) Микроволновая подготовка проб в геохимических и экологических исследованиях. Журнал аналитической химии. 68(6), 524-534.

  6. Меньшиков В.И., Власова В.Н., Ложкин В.И., Сокольникова Ю.В. (2016) Определение элементов платиновой группы в горных породах методом ИСП-МС с внешней градуировкой после отделения матричных элементов на катионите КУ-2-8. Аналитика и контроль. 20(3), 190-201.

  7. Палесский С.В., Николаева И.В., Козьменко О.А., Аношин Г.Н. (2009) Определение элементов платиновой группы и рения в стандартных геологических образцах изотопным разбавлением с масс-спектрометрическим окончанием. Журнал аналитической химии. 64(3), 287-291.

  8. Савельев Д.П., Палесский С.В., Портнягин М.В. (2018) Элементы платиновой группы в базальтах офиолитового комплекса п-ова Камчатский мыс (Восточная Камчатка): источники вещества. Геология и геофизика. 59(12), 1997-2010.

  9. Aulbach S., Sun J., Tappe S., Gerdes A. (2019) Effects of multi-stage rifting and metasomatism on HSE-187Os/188Os systematics of the cratonic mantle beneath SW Greenland. Contributions to Mineralogy and Petrology. 174(2), 3.

  10. Boch K., Schuster M., Risse G., Schwarzer M. (2002) Microwave-assisted digestion procedure for the determination of palladium in road dust. Anal. Chim. Acta. 459(2), 257-265.

  11. Chu Z., Harvey J., Liu C.-Z., Guo J.-H., Wu F.-Y., Tian W., Zhang Y.-L., Yang Y.-H. (2013) Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chem. Geol. 357, 52-66.

  12. Chu Z., Yan Y., Chen Z., Guo J., Yang Y., Li C., Zhang Y. (2015) Comprehensive Method for Precise Determination of Re, Os, Ir, Ru, Pt, Pd Concentrations and Os Isotopic Compositions in Geological Samples. Geostand. Geoanal. Res. 39(2), 151-169.

  13. Feignon J.-G., Schulz T., Koeberl C. (2022) Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak ring, Mexico. Geochim. Cosmochim. Acta. 323, 74-101.

  14. Fisher-Godde M., Becker H., Wombacher F. (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365-383.

  15. Ishikawa A., Senda R., Suzuki K., Dale C.W., Meisel T. (2014) Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials. Chem.Geol. 384, 27-46.

  16. Jochum K.P., Weis U., Schwager B., Stoll B., Wilson S.A., Haug G.H., Andreae M.O., Enzweiler J. (2016) Reference values following ISO guidelines for frequently requested rock reference materials. Geostand. Geoanal. Res. 40(3), 333-350.

  17. Li J., Jiang X.-Y., Xu J.-F., Zhong L.-F., Wang X.-C., Wang G.-Q., Zhao P.-P. (2014) Determination of Platinum-Group Elements and Re-Os Isotopes using ID-ICP-MS and N-TIMS from a Single Digestion after Two-Stage Column Separation. Geostand. Geoanal. Res. 38(1), 37-50.

  18. Li J., Zhao P.-P., Liu J., Wang X.-C., Yang Yang A., Wang G.-Q., Xu J.-F. (2015) Reassessment of Hydrofluoric Acid Desilicification in the Carius Tube Digestion Technique for Re–Os Isotopic Determination in Geological Samples. Geostand. Geoanal. Res. 39 (1), 17-30. https://doi.org/10.1111/j.1751-908X.2014.00299.x

  19. Liu J., Brin L.E., Pearson D.G., Bretschneider L., Luguet A., van Acken D., Kjarsgaard B.A., Riches A.J.V., Miskovic A. (2018) Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria Island Geochim. Cosmochim. Acta. 239, 284-311.

  20. Meisel T. C., Horan M. F. (2016) Analytical Methods for the Highly Siderophile Elements. Rev. Mineral. Geochem. 81(1), 89-106.

  21. Meisel T., Moser J. (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem. Geol. 208, 319-338.

  22. Meisel T., Moser J. (2007) Platinum-Group Element and Rhenium Concentrations in Low Abundance Reference Materials. Geostand. Geoanal. Res. 28(2), 233-250.

  23. Michel T. (2010) Breaking the Sample Preparation Bottleneck With a New Approach to Microwave Digestion. Am. Lab. 42(11), 32-35.

  24. Nicklas R.W., Brandon A.D., Waight T.E., Puchtel I.S., Day J.M.D. (2021) High-precision Pb and Hf isotope and highly siderophile element abundance systematics of high-MgO Icelandic lavas. Chem Geol. 582, 120436.

  25. Paquet M., Day J.M.D., Brown D.B., Waters C.L. (2022) Effective global mixing of the highly siderophile elements into Earth’s mantle inferred from oceanic abyssal peridotites. Geochim. Cosmochim. Acta. 316, 347-362.

  26. Puchtel I.S., Walker R.J., Touboul M., Nisbet E.G., Byerly G.R. (2014) Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton. Komatiites. Geochim. Cosmochim. Acta. 125, 394-413.

  27. Qi L., Gao J., Huang X., Hu J., Zhou M.-fu, Zhong H. (2011) An improved digestion technique for determination of platinum group elements in geological samples. J. Anal. At. Spectrom. 26, 1900-1904.

  28. Rosman K.J.R., Taylor P.D.P. (1998) Isotopic compositions of the elements 1997 (Technical Report). Pure Appl. Chem. 70(1), 217-235.

  29. Sato H., Ishikawa A., Onoue T., Tomimatsu Y., Rigo M. (2021) Sedimentary record of Upper Triassic impact in the Lagonegro Basin, southern Italy: Insights from highly siderophile elements and Re-Os isotope stratigraphy across the Norian/Rhaetian boundary. Chem.Geol. 586:120506.

  30. Sun N., Brandon A. D., Forman S. L., Waters M. R. (2021) Geochemical evidence for volcanic signatures in sediments of the Younger Dryas event. Geochim. Cosmochim. Acta. 312, 57-74.

  31. Todand M.M., Jarvis I., Jarvis K.E. (1995) Microwave digestion and alkali fusion procedures for the determination of the platinum-group elements and gold in geological materials by ICP-MS. Chem. Geol. 124(1–2), 21-36.

  32. Van Acken D., Hoffmann J.E., Schorscher J.H.D., Schulz T., Heuser A., Luguet A. (2016) Formation of high-Al komatiites from the Mesoarchean Quebra Osso Group, Minas Gerais, Brazil: Trace elements, HSE systematics and Os isotopic signatures. Chem.Geol. 422, 118-121.

  33. Wang Z., Becker H. (2006) Abundances of Sulfur, Selenium, Tellurium, Rhenium and Platinum-Group Elements in Eighteen Reference Materials by Isotope Dilution Sector-Field ICP-MS and Negative TIMS. Geostand. Geoanal. Res. 38(2), 189-209.

  34. Zou Z., Wang Z., Cheng H., He T., Liu Y., Chen K., Hu Z.-C., Liu Y. (2020) Comparative determination of mass fractions of elements with variable chalcophile affinities in geological reference materials with and without HF-desilicification. Geostand. Geoanal. Res. 44(3), 501-521.

Дополнительные материалы отсутствуют.