Геохимия, 2023, T. 68, № 9, стр. 897-925

Особенности состава породообразующих минералов лампроитовых лав вулкана Гауссберг, Восточная Антарктида

Н. А. Мигдисова a*, Н. М. Сущевская a**, М. В. Портнягин b, Т. А. Шишкина a, Д. В. Кузьмин c, В. Г. Батанова d

a Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук ГЕОХИ РАН
119991 Москва, ул. Косыгина, 19, Россия

b GEOMAR Helmholtz Centre for Ocean Research Kiel
Киль, ФРГ

c Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук ИГМ СО РАН
Новосибирск, просп. Академика Коптюга, 3/1, Советский район, микрорайон Академгородок, Россия

d Институт Наук о Земле ISTerre Institut des Sciences de la Terre ISTerre Université J. Fourier-CNRS Maison des Géosciences
Гренобль, Франция

* E-mail: nat-mig@yandex.ru
** E-mail: nadsus@gmail.com

Поступила в редакцию 23.06.2022
После доработки 18.11.2022
Принята к публикации 06.04.2023

Аннотация

В работе представлены новые многочисленные данные по геохимическому составу вкрапленников оливина, клинопироксена, лейцита, а также включений шпинели в оливине и закалочного стекла из лампроитов вулкана Гауссберг (восточная Антарктида). Большинство вкрапленников оливина в лампроитах Гауссберга составляют высокомагнезиальные разности (Fo89–91) с повышенными содержаниями Ni (до 4900 ppm) и высоким Ni/Co отношением. По данным около 320 анализов клинопироксенов установлены две группы вкрапленников, относящихся к группе диопсида. Группа I состоит преимущественно из высокомагнезиальных разностей (Mg# > 80), в то время как клинопироксены группы II – менее магнезиальные (Mg# 52–80). Главное различие клинопироксенов двух групп проявляется в повышенных содержаниях Al2O3, FeO и пониженных TiO2, Cr2O3 и NiO в составах группы II по сравнению с группой I, а также различных содержаниях редких элементов, что может отражать их кристаллизацию из разных типов первичных расплавов. По данным изучения около 550 зерен вкрапленников лейцита в лампроитах Гауссберга показано, что они отвечают идеальной стехиометрии лейцита K[AlSi2O6] и при этом обогащены Na2O (0.05–0.35 мас. %), но обеднены K2O (19.9–20.9 мас. %) по сравнению с лейцитами из лампроитов других провинций. Содержание BaО достигает 0.3 мас. %, SrO – 0.04 мас. %. Содержание железа в большинстве вкрапленников лейцита варьирует в пределах 0.7–1.2 мас. % Fe2O3, при этом встречаются отдельные зерна с пониженными содержаниями Fe2O3 (<0.5 мас. %). В микролитах основной массы и каймах вкрапленников содержание железа может достигать 2.4 мас. % Fe2O3, что может свидетельствовать о более окисленных условиях в момент извержения лав. На основании изучения природных образцов, существующих экспериментальных данных и расчетных моделей были восстановлены порядок и условия кристаллизации лампроитов Гауссберга. Кристаллизация происходила в порядке: хромшпинелид → хромшпинелид + оливин → оливин + лейцит (±хромшпинелид) → оливин + лейцит + клинопироксен (±хромшпинелид). Близликвидусная ассоциация, представленная вкрапленниками высокомагнезиального оливина с включениями хромшпинелида, образовалась в диапазоне температур от 1180 до 1250°С. Дальнейшая кристаллизация расплава с формированием ассоциации минералов-вкрапленников оливин + лейцит + клинопироксен могла происходить при давлении ниже 2 ГПа и температурах 1070–1180°С, соответствующих присутствию воды в магматической системе. Оценки окислительно-восстановительных условий кристаллизации лампроитов, полученные с использованием разных оксибарометров, варьируют в широком диапазоне: от QFM-0.5 до QFM + 2.3. Повышенные содержания Ni в ликвидусных оливинах Гауссберга свидетельствуют о высоких содержаниях никеля в источнике. Показано, что возможное формирование ультращелочных магм в районе вулкана Гауссберг происходило в ходе плавления континентальной литосферы, которая была гетерогенна и включала в себя как перидотитовую мантию, так и фрагменты водосодержащих пироксенитов.

Ключевые слова: оливин, клинопироксен, лейцит, лампроиты, ультращелочные породы, Гауссберг, Антарктида, пироксенит, перидотит, окислительно-восстановительные условия, температура кристаллизации, мантийный источник

Список литературы

  1. Лейченков Г.Л., Гусева Ю.Б. (2006) Строение и история развития земной коры осадочного бассейна моря Дейвиса, Восточная Антарктика. В сб.: Научные результаты геолого-геофизических исследований в Антарктике. Ред. Лейченков Г.Л., Лайба А.А. Вып. 1. СПб.: ВНИИОкеангеология, 101–115.

  2. Николаев Г.С., Арискин А.А., Бармина Г.С., Назаров М.А., Альмеев Р.Р. (2016) Тестирование Ol–Opx–Sp оксибарометра Балльхауса–Берри–Грина и калибровка нового уравнения для оценки окислительного состояния расплавов, насыщенных оливином и шпинелидом. Геохимия. 4, 323-343.

  3. Nikolaev G.S., Ariskin A.A., Barmina G.S., Nazarova M.A., Almeev R.R. (2016) Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem. Int. 54(4), 301–320.

  4. Соболев А.В., Соболев С.В., Кузьмин Д.В., Малич К.Н., Петрунин А.Г. (2009) Механизм образования сибирских меймечитов и природа их связи с траппами и кимберлитами. Геология и геофизика. 50(12), 1293-1334.

  5. Сущевская Н.М., Беляцкий Б.В., Ткачева Д.А., Лейченков Г.Л., Кузьмин Д.В., Жилкина А.В. (2018) Раннемеловой щелочной магматизм Восточой Антарктиды (специфика, условия формирования, взаимосвязь с плюмом Кергелен). Геохимия. (11), 1005-1026.

  6. Sushchevskaya N.M., Belyatsky B.V., Tkacheva D.A., Leitchenkov G.L., Kuzmine D.V., Zhilkina A.V. (2018) Early Cretaceous Alkaline Magmatism of East Antarctica: Peculiarities, Conditions of Formation, and Relationship with the Kerguelen Plume. Geochem. Int. 56(11), 1051-1070.

  7. Сущевская Н.М., Мигдисова Н.А., Антонов А.В., Крымский Р.Ш., Беляцкий Б.В., Кузьмин Д.В., Бычкова Я.В. (2014) Геохимические особенности лампроитовых лав четвертичного вулкана Гауссберг (Восточная Антарктида) – результат влияния мантийного плюма Кергелен. Геохимия. (12), 1079-1098.

  8. Sushchevskaya N.M., Migdisova N.A., Antonov A.V., Krymsky R.Sh., Belyatsky B.V., Kuzmin D.V., Bychkova Ya.V. (2014) Geochemical Features of the Quaternary Lamproitic Lavas of Gaussberg Volcano, East Antarctica: Result of the Impact of the Kerguelen Plume. Geochem. Int. 52(12), 1030-1048.

  9. Сущевская Н.М., Беляцкий Б.В., Дубинин Е.П., Левченко О.В. (2017) Эволюция плюма Кергелен и его влияние на магматизм континентальных и океанических областей Восточной Антарктиды. Геохимия. (9), 782-799.

  10. Sushchevskaya N.M., Belyatsky B.V., Dubinin E.P., Levchenko O.V. (2017) Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica. Geochem. Int. 55(9), 775-791.

  11. Шишкина Т.А., Аносова М.О., Мигдисова Н.А., Портнягин М.В., Сущевская Н.М., Батанова В.Г. (2023) Элементы-примеси в оливине вулканических пород: использование для изучения магматических систем. Геохимия. 68(1), 1-24.

  12. Shishkina T.A., Anosova M.O., Migdisova N.A., Portnyagin M.V., Sushchevskaya N.M. and Batanova V.G. (2023) Trace Elements in Olivine of Volcanic Rocks: Application to the Study of Magmatic Systems. Geochem. Int. 61(1), 1-23.

  13. Atkinson W.J., Hughes F.E., Smith C.B. (1984) A review of the kimberlitic rocks of Western Australia/ In: Kimberlites I: Kimberlites and Related Rocks (Kornprobst O ed.), Amsterdam: Elsevier, 195-224 p.

  14. Avanzinelli R., Elliott T., Tommasini S., Conticelli S. (2008) Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium. J. Petrol. 49, 195-223.

  15. Ballhaus C.G., Berry R.F., Green D.H. (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 107, 27-40.

  16. Barton M., Van Bergen M.J. (1981) Green clinopyroxene and associated phases in a potassium-rich lava from Leucite Hills, Wyoming. Contrib. Min. Petrol. 77, 101-114.

  17. Barton M., Varekamp K.C., van Bergen M.J. (1982) Complex zoing of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing. J. Volcanol. Geortherm. Res. 14, 361-388.

  18. Batanova V., Sobolev A.V., Kuzmin D.V. (2015) Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 419, 149-157.

  19. Batanova V.G., Belousov I.A., Savelieva G.N., Sobolev A.V. (2011) Consequences of chanellized and diffuse melt transport in Supra-subduction zone mantle: Evidence from the Voykar ophiolite (Polar Ural). J.Petrol. 52(12), 2483-2521.

  20. Canil D., Fedortchouk Y. (2001). Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can. Min. 39, 319-330.

  21. Carbonin S., Salviulo G., Munno R., Desiderio M. (1989) Crystal-chemical examination of natural diopsides: some geometrical indications of Si-Ti tetrahedral substitution. Mineral. Petrol. 41, 1-10.

  22. Chayka I.F., Sobolev A.V., Andrey E. Izokh A.E., Batanova V.G., Krasheninnikov S.P., Chervyakovskaya M.V., Kontonikas-Charos A., Kutyrev A.V., Lobastov B.M., Chervyakovskiy V.S. (2020) Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions. Minerals 10(337). www.mdpi.com/journal/mineralshttps://doi.org/10.3390/min10040337

  23. Chen Y., Zhang Y., Graham D., Su S., Deng J. (2007) Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos. 96, 108-126.

  24. Choi S.H., Mukasa S.B., Kwon S.T., Andronikov A.V. (2006) Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem. Geol. 232, 134-151.

  25. Chu Z.Y., Harvey J., Liu C.Z., Guo J.H., Wu F.Y., Tian W., Zhang Y.L., Yang Y.H. (2013). Source of highly potassic basalts in northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chem. Geol. 357, 52-66.

  26. Collerson K.D., McCulloch Malcolm T. (1983) Nd and Sr isotope geochemistry of leucite-bearing lavas from Gaussberg, East Antarctica. Oliver R.L., James P.R. & Jago J.B. (eds.) / Antarctic Earth Science. Cambridge, Cambridge University Press, 676-680 p.

  27. Coogan L.A., Saunders A.D., Wilson R.N. (2014) Aluminium-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provences. Chem. Geol. 368, 1-10.

  28. Davies G.R., Stolz A.J., Mahotkin I.L., Nowell G.M., Pearson D.G. (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J. .Petrol. 47, 1119-1146.

  29. Davis L.L., Smith D. (1993) Ni-rich olivine in minettes from two Buttes, Colorado: a connection between potassic melts from the mantle and low Ni partition coefficients. Geochim. Cosmochim. Acta. 57(1), 123-129.

  30. Duke J.M. (1976) Distribution of the period four transition elements among olivine, calcic clinopyroxene and mafic silicate liquid: experimental results. J. Petrol. 17(4), 499-521.

  31. Edgar A.D., Mitchell R.H. (1997) Ultra high pressure – temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: Derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle. J. Petrol. 38(6), 457-477.

  32. Elburg M., Foden J. (1999) Sources for magmatism in central Sulawesi: geochemical and Sr–Nd–Pb isotopic constraints. Chem. Geol. 156, 67-93.

  33. Elkins L.J., Bourdon B., Lambart S. (2019) Testing pyroxenite versus peridotite sources for marine basalts using U‑series isotopes. Lithos. 332–333, 226-244.

  34. Ellison A.J.G., Hess P.C. (1994) Raman-study of potassium-silicate glasses containing Rb+, Sr2+, Y3+ and Zr4+-implications for cation solution mechanisms in multicomponent liquids. Geochim. Cosmochim. Acta. 58, 1877-1887.

  35. Fasshauer D.W., Wunder B., Chatterjee N.D., Hohne G.W.H. (1998) Heat capacity of wadeite-type K2Si4-O9 and the pressure-induced stable decomposition of K-feldspar. Contrib. Mineral. Petrol. 131, 210-218

  36. Foley S.F. (1985) The oxidation state of lamproitic magmas. Min.Petr.Mitt. 34, 217-238.

  37. Foley S.F. (1989) Experimental constraints on petrology and Chemistry in lamproites: 1. The effect of water activity and oxygen fugacity. Eur. J. Mineral. 1, 411-426.

  38. Foley S.F. (1993) An experimental study of olivine lamproite: First results from the diamond stability field. Geochim. Cosmochim. Acta. 57, 483-489

  39. Foley S.F., Jacob D.E., O’Neil H.St.C. (2011) Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib. Mineral. Petrol. 162, 1-20.

  40. Foley S.F., Jenner G.A. (2004) Trace element partitioning in lamproitic magmas – the Gaussberg olivine leucitite. Lithos. 75, 19-38.

  41. Foley S.F., Prelevic D., Rehfeldt T., Jacob D.E. (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth. Planet. Sci. Lett. 363, 181-191.

  42. Foley S.F., Venturelli G., Green D.H., Toscani L. (1987) The ultrapotassic Rocks: Characteristics, classification, and constraints for petrogenetic models. Earth Sci. Rev. 24, 81-134.

  43. Foley S.F., Ezad I.S., van der Laan S.R., Pertermann M. (2022) Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts. Geosci. Front. 13(4), 101 380.

  44. Ford C.E., Russel D.G., Graven J.A., Fisk M.R. (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petr. 24, 256-265.

  45. Frey F.A., Coffin M.F., Wallace P.J. (2000) Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, Southern Indian Ocean. Earth Planet. Sci. Lett. 176, 73-89.

  46. Geng X., Liang Z., Zhang W., Liu Y., Hu Z., Deng L. (2022) Formation of green-core clinopyroxene in continental basalts through magmatic differentiation and crustal assimilation: Insights from in-situ trace element and Pb isotopic compositions. Lithos. 410–411, 106587. https://doi.org/10.1016/j.lithos.2021.106587

  47. Glebovsky Yu.S. (1959) Subice Brown-Gaussberg Ridge. Byull. Soviet Antarct. Expedition. 10, 13-17.

  48. Golynsky D.A., and Golynsky A.V. (2007) “Gaussberg rift—illusion or reality?” in In 10th ISAES, (Eds.edited by A.K. Cooper A.K., and C.R. Raymond C.R.) et al. Extended Abstract 168. U.S.Geol. Surv. Nat. Acad.; USGS OF 2007. 1047, 5, 168 p.

  49. Grantham G.H. (1996) In: Weddell Sea tectonics and Gondwana break-up., London: GS Special publication. 108, 63-71.

  50. Greґgoire M., Bell D.R., Le Roex A.P. (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths:their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 142, 603-625.

  51. Gupta A.K., Yagi K. (1980) Petrology and genesis of the leucite-bearing rocks. Springer, Berlin. 252 p.

  52. Gupta A.K. (2015) Origin of Potassium-rich Silica-deficient Igneous Rocks. Springer Geology (2015), Springer India, 529 p. DOI http://www.springer.com/series/101721https://doi.org/10.1007/978-81-322-2083-1_

  53. Gupta A.K. (1972). The system forsterite–diopside–akermanite–leucite and its significance in the origin of potassium-rich mafic and ultramafic rocks. Am. Min. 57, 1242-1259.

  54. Gurenko A.A., Sobolev A.V., Kononkova N.N. (1989) New petrologic data on ugandites from the East African rift, as revealed by study of magmatic inclusions in minerals. Doklady of the USSR Academy of Sciences. 305, 130-134.

  55. Hart S.R., Blusztajn J., Lemasurier W.E., Rex D.C. (1997) Hobbs Coast Cenozoic volcanism: Inplications for the West Antarctic rift system. Chem. Geol. 139, 223-248.

  56. Henderson C.M.B., Taylor D. (1969) An experimental study of the leucite mineral group. Progr. Exp. Petrol. 1, 45-50.

  57. Herzberg, C. (2011) Basalts as temperature probes of Earth’s mantle. Geology 39, 1179-1180.

  58. Jankovics M.E., Taracsák Z., Dobosi G., Embey-Isztin A., Batki A., Harangi S., Hauzenberger C.A. (2016) Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics. Lithos. 262, 120-134.

  59. Jaques A.L., Lewis J.D., Smith C.B. (1986) The kimberlites and lamproites of Western Australia. Geol. Surv. West. Aust. Bull. 132, 269.

  60. Jaques A.L., Lewis J.D., Smith C.B., Gregory G.P., Ferguson J., Chappell B.W., McCulloch M.T. (1984) The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberly region, Western Australia. In: Kornprobst, J. (Ed.), Kimberlites I: Kimberlites and Related Rocks (Eds. Kornprobst O ed.), Amsterdam: Elsevier, p. 225-254.

  61. Jarosewich E.J., Nelen J.A., Norberg J.A. (1980) Reference samples for electron microprobe analysis. Geostandards. Newsletter. 4, 43-47.

  62. Kelley K.A., Cottrell E. (2009) Water and the oxidation state of subduction zone magmas. Science. 325, 605-607.

  63. Kiritani T., Kimura J.I., Ohtani E., Miyamoto H., Fukuyama K. (2013) Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos. 156–159, 1-12.

  64. Kohn S.C., Schofield P.F. (1994) The importance of melt composition in controlling trace-element behavior: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chem. Geol. 117, 73-87.

  65. Koshlyakova A.N., Sobolev A.V., Krasheninnikov S.P. Batanova V.G., Borisov A.A. (2022) Ni partitioning between olivine and highly alkaline melts: An experimental study. Chem. Geol. 587, 120615.

  66. Liu J.Q., Chen L.H., Wang X.J., Zhang X.Y., Zeng G., Erdmann S., Murphy D.T., Kenneth K.D., Komiya T., Krmíček L. (2022) Magnesium and zinc isotopic evidence for the involvement of recycled carbonates in the petrogenesis of Gaussberg lamproites, Antarctica. Chem. Geol. 609, 121067.

  67. Mallmann G., O’Neill H.St.G. (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J. Petrol. 54(5), 933-949.

  68. McKenzie D. (1989) Some remarks on the movement of small melt fractions in the mantle. Earth. Planet. Sci. Lett. 95, 53-72.

  69. Migdisova N.A., Sushchevskaya N.M., Luttinen A.V., Mikhal’skii E.M. (2004) Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic region. Petrology. 12(2), 206-224.

  70. Milman-Barris M.S., Beckett J.R., Baker M.B., Hofmann A.E., Morgan Z., Crowley M.R., Vielzeuf D., Stolper E. (2008) Zoning of phosphorus in igneous olivines. Contrib.Mineral.Petrol. 155, 739-765.

  71. Mitchell R.H., Bergman S.C. (1991) Petrology of lamproites. New York: Plenum. 446 p.

  72. Morimoto N., Fabries J., Fergusson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi G. (1988). Nomenclature of pyroxenes. Am. Min. 73, 1123-1133.

  73. Morse S.A. (1969) Alkali feldspar-water at 5 kb. Carnegie Inst Wash Yearb. 67, 120–126.

  74. Murphy D.T., Collerson K.D., Kamber B.S. (2002) Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments. J. Petrol. 43(6), 981-1001.

  75. Mysen B.O., Richet P. (2018) Silicate glasses and melts. Elsevier. 2018 720 p.

  76. Mysen B.O., Virgo D. (1980) Trace element partitioning and melt structure: an experimental study at 1 atm. pressure. Geochim. Cosmochim. Acta. 44(12), 1917-1930.

  77. Nag K., Arima M., Gupta A.K. (2007) Experimental study of the join forsterite-diopside-leucite and forsterite-leucite-akermanite up to 2.3 GPa [P (H2O) = P (total)] and variable temperatures; its petrological significance. Lithos. 98(1–4), 177-194.

  78. Nelson D.R., McCulloch M.T., Sun S.-S. (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd, and Pb isotopes. Geochim. Cosmochim. Acta. 50, 231-245.

  79. Peacor D.R. (1968) A high temperature single crystal diffractometer study of leucite (K, Na) AlSi2O6. Z. Kristallogr. 127, 213-224.

  80. Pe-Piper G. (1984) Zoned pyroxenes from shoshonite lavas of Lesbos, Greece: inferences concerning shoshonite petrogenesis. J. Petrol. 25, 453-472.

  81. PetDB: https://search.earthchem.org/

  82. Poldervaart A., Hess H.H. (1951) Pyroxenes in the Crystallization of Basaltic Magma. J. Geol. 59(5), 472-489.

  83. Prelevic D., Foley S.F. (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet. Sci. Lett. 256, 120-135.

  84. Prelevic D., Jacob D.E., Foley S.F. (2013) Recycled continental crust is an essential ingredient of Mediterranean orogenic mantle lithosphere. Earth Planet. Sci. Lett. 362, 187-197.

  85. Prelevic D., Foley S.F., Romer R., Conticelli S. (2008) Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim. Cosmochim. Acta. 72, 2125-2156.

  86. Salvioli-Mariani E., Toscani L., Bersani D. (2004). Magmatic evolution of the Gaussberg lamproite (Antarctica): volatile content and glass composition. Mineral. Mag. 68, 83-100, https://doi.org/10.1180/0026461046810173

  87. Sheraton J.W. (1981) Chemical analyses of rocks from East Antarctica. Bur. Min. Res. Record. 1981/14, 67-68.

  88. Sheraton J.W. (1985) Chemical analyses of rocks from East Antarctica: Part 2. Bur. Min. Res. Record. 1985/12.

  89. Sheraton J.W., and Cundari A. (1980) Leucitites from Gaussberg, Antarctica. Contrib. Mineral. Petrol. 71, 417-427. https://doi.org/10.1007/BF00374713

  90. Shishkina T.A., Portnyagin M.V., Botcharnikov R.E., Almeev R.R., Simonyan A.V., Garbe-Schönberg D., Schuth S., Oeser M., Holtz F. (2018) Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas. Am. Mineral. 103, 369-383.

  91. Sigurdsson H. (1977) Spinels in leg 37 bazalts and peridotites: phase chemistry and zoning. Proc. Ocean Drill. Program: Initial Rep. Deep sea drilling project, Initial Reports 37, 883-891.

  92. Smellie J.L., Collerson K.D. (2021) Chapter 5. Gaussberg: volcanology and petrology. Geological Society, London, Memoirs, 55(1), 615-628. https://doi.org/10.1144/M55-2018-85

  93. Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Nicholas T. Arndt, Sun-Lin Chung, Danyushevsky L.V., Elliott Tim, Frey Frederick A., Garcia Michael O., Gurenko Andrey A., Kamenetsky Vadim S., Kerr Andrew C., Krivolutskaya Nadezhda A., Matvienkov Vladimir V., Nokogosian Igor K., Rocholl Alexander, Sigurdsson Ingvar A., Suschevskaya Nadezhda M., Mengist Teklay. (2007) The amount of recycled crust in sources of mantle-derived melts. Science. 316(5823), 412-417.

  94. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature. 434, 590-597. https://doi.org/10.1038/nature03411

  95. Sobolev A.V., Sobolev N.V., Smith S.B., Kononkova N.N. (1976) New data on the petrology of the olivine lamproites of Western Australia revealed by the study of magmatic inclusions in olivine. Doklady Akademii Nauk SSSR. 284(1), 196-201.

  96. Sobolev A.V., Asafov E.V., Gurenko A.A., Arndt N.T., Batanova V.G., Portnyagin M.V., Garbe-Schonberg D., Krasheninnikov S.P. (2016) Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature. 531, 628-632.

  97. Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. Eds. Suanders A.D., Norry M.J., Geol.Soc.Spec.Publ. 42, 313-345.

  98. Sun Y., Ying J., Zhou X., Shao J., Chu Z., Su B. (2014) Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: Implications for the role of ancient subducted sediments. Lithos. 208–209, 53-66.

  99. Thompson R.N. (1977) Primary basalts and magma genesis(III), Alban hills, Roman Comagamatic Province, central Italy. Contrib. Mineral. Petrol. 60, 91-108.

  100. Tingey R.J., McDougall I., Gleadow A.J.W. (1983) The age and mode of formation of Gaussberg, Antarctica. J. Geol. Soc. Austral. 30, 241-246.

  101. Toplis M.J. (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 149, 22-39.

  102. Tuttle O.F., Bowen N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol. Soc. Am. Mem. 74, 153.

  103. Von Drygalski, Erich; Translated by M.M. Raraty. (1989) The Southern Ice-Continent: The German South Polar Expedition Aboard the Gauss, 1901–1903. United Kingdom: Published by Bluntisham Books; Erskine Press., United Kingdom, 373 p.

  104. Vyalov O.S., Sobolev V.S. (1959) Gaussberg, Antarctica., Int. Geol. Rev. 1(7), 30-40.

  105. Wagner C., Velde D. (1986) The mineralogy of K-richterite-bearing lamproites. Am. Mineral. 71, 17-37.

  106. Williams R.W., Collerson K.D., Gill J.B., Deniel C. (1992) High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites. Earth Planet. Sci. Lett. 111, 257-268.

  107. Zhang M., Suddaby P., O’Reilly S.Y., Norman M., Qiu J.X. (2000) Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenoliths evidence. Tectonophysics. 328, 131-156.

  108. Zhang M., Suddaby P., Thompson R.N., Thirlwall M.F., Menzies M.A. (1995) Potassi\c volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J. Petrol. 36, 1275-1303.

  109. Zou H., Reid M.R., Liu Y., Yao Y., Xu X., Fan Q. (2003) Constraints on the origin of historic potassic basalts from northeast China by U–Th disequilibrium data. Chem. Geol. 200, 189-201.

Дополнительные материалы

скачать ESM.zip
Приложение 1-4