Вопросы ихтиологии, 2023, T. 63, № 3, стр. 365-371

Влияние солёности на липидный состав молоди горбуши Oncorhynchus gorbuscha (Salmonidae)

О. Б. Васильева 1*, Д. А. Ефремов 1, Т. Р. Руоколайнен 1, Н. Н. Немова 1

1 Институт биологии Карельского научного центра РАН – ИБ КарНЦ РАН
Петрозаводск, Россия

* E-mail: vasil@krc.karelia.ru

Поступила в редакцию 19.07.2022
После доработки 23.07.2022
Принята к публикации 27.07.2022

Аннотация

Выявлены модификации липидов и жирных кислот в эксперименте по влиянию различных режимов солёности на мальков горбуши Oncorhynchus gorbuscha (р. Ольховка, бассейн Белого моря). В условиях гиперосмотического шока (1 ч в морской воде после пресной) у молоди увеличивается содержание стероидов, насыщенных жирных кислот и сигнальных молекул – фосфолипидов (фосфатидилсерина и фосфатидилинозитола) и арахидоновой кислоты. Через 24 ч пребывания в морской воде после пресной у мальков горбуши установлено снижение количества фосфатидилхолина, насыщенных, мононенасыщенных и полиненасыщенных n-6-жирных кислот, а уровень фосфатидилэтаноламина, полиненасыщенных n-3-жирных кислот (особенно эйкозапентаеновой и докозагексаеновой кислот), напротив, значительно возрастает. Изменения липидного состава мальков горбуши в условиях гипоосмотического стресса (24 ч в пресной воде после 24 ч в морской) направлены на стабилизацию функционирования мембранного аппарата клеток – снижается уровень биоэффекторов: фосфатидилсерина, фосфатидилинозитола, арахидоновой, эйкозапентаеновой и докозагексаеновой кислот. Показано снижение уровня энергетических липидов (триацилглицеринов) во всех экспериментальных группах. Результаты свидетельствуют о широком диапазоне адаптивных возможностей организма мальков горбуши в условиях резкой смены солёности среды и их готовности к покатной миграции в море незадолго до выхода из гнёзд.

Ключевые слова: горбуша Oncorhynchus gorbuscha, солёность среды, липиды, жирные кислоты, Белое море.

Список литературы

  1. Богданов М., Доухан В. 1999. Липид-опосредованный фолдинг белка // Журн. биол. химии. Т. 274. С. 827–830.

  2. Елисеева И.И. 2007. Статистика. М.: Высш. образование, 566 с.

  3. Крепс Е.М. 1981. Липиды клеточных мембран. Л.: Наука, 339 с.

  4. Немова Н.Н., Кяйвяряйнен Е.И., Рендаков Н.Л. и др. 2021. Содержание кортизола и активность Na+/K+-АТФазы при адаптации молоди горбуши Oncorhynchus gorbuscha (Salmonidae) к изменению солёности среды // Вопр. ихтиологии. Т. 61. № 5. С. 599–606. https://doi.org/10.31857/S0042875221050131

  5. Сидоров В.С., Лизенко Е.И., Болгова О.М., Нефедова З.А. 1972. Липиды рыб. 1. Методы анализа. Тканевая специфичность ряпушки Coregonus albula L. // Лососёвые (Salmonidae) Карелии. Петрозаводск: Изд-во Карел. фил. АН СССР. С. 152–163.

  6. Цыганов Э.П. 1971. Метод прямого метилирования липидов после ТСХ без элюирования с силикагеля // Лаб. дело. № 8. С. 490–493.

  7. Шталь Э. 1965. Хроматография в тонких слоях. М.: Мир, 508 с.

  8. Allen P.J., McEnroe M., Forostyan T. et al. 2011. Ontogeny of salinity tolerance and evidence for seawater-entry preparation in juvenile green sturgeon, Acipenser medirostris // J. Comp. Physiol. B. V. 181. № 8. P. 1045–1062. https://doi.org/10.1007/s00360-011-0592-0

  9. Arjona F.J., Vargas-Chacoff L., Ruiz-Jarabo I. 2007. Osmoregulatory response of Senegalese sole (Solea senegalensis, Kaup 1858) to changes in environmental salinity // Comp. Biochem. Physiol. A. V. 148. № 2. P. 413–421. https://doi.org/10.1016/j.cbpa.2007.05.026

  10. Babili M.E., Brichon G., Zwingelstein G. 1996. Sphingomyelin metabolism is linked to salt transport in the gills of euryhaline fish // Lipids. V. 31. № 4. P. 385–392. https://doi.org/10.1007/BF02522924

  11. Bell J.G., Tocher D.R., Farndale B.M. et al. 1997. The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation // Ibid. V. 32. № 5. P. 515–525. https://doi.org/10.1007/s11745-997-0066-4

  12. Daikoku T., Yano I., Masuf M. 1982. Lipid and fatty acid composition and their changes in the different organs and tissues of guppy Poecilia reticulata on sea water adaptation // Comp. Biochem. Physiol. A. V. 73. № 2. P. 167–174. https://doi.org/10.1016/0300-9629(82)90050-0

  13. Engelbrecht F.M., Mari F., Anderson J.T. 1974. Cholesterol determination in serum. A rapid direction method // S. Afr. Med. J. V. 48. № 2. P. 250–256.

  14. Folch J., Lees M., Stanley G.H.S. 1957. A simple method for the isolation and purification of total lipides from animal tissues // J. Biol. Chem. V. 226. № 1. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

  15. Folmar L.C., Dickhoff W.W. 1980. The parr-smolt transformation (smoltification) and seawater adaptation in salmonids // Aquaculture. V. 21. № 1. P. 1–37. https://doi.org/10.1016/0044-8486(80)90123-4

  16. Guidelines for the use of fishes in research. 2014. Bethesda: Am. Fish. Soc., 90 p.

  17. Handeland S.O., Bjornsson B.T., Arnesen A.M., Stefansson S.O. 2003. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and fanned strains // Aquaculture. V. 220. № 1–4. P. 367–384. https://doi.org/10.1016/S0044-8486(02)00508-2

  18. Hansen H.J.M., Kelly S.P., Grosell M., Wood C.M. 2002. Studies on lipid metabolism in trout (Oncorhynchus mykiss) branchial cultures // J. Exp. Zool. V. 293. № 7. P. 683–692. https://doi.org/10.1002/jez.10166

  19. Harel M., Gavasso S., Leshin J. et al. 2001. The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae // Fish Physiol. Biochem. V. 24. № 2. P. 113–123. https://doi.org/10.1023/A:1011924704459

  20. Herrera M., Vargas-Chacoff L., Hachero I. et al. 2009. Osmoregulatory changes in wedge sole (Dicologoglossa cuneata, Moreau, 1881) after acclimation to different environmental salinities // Aquac. Res. V. 40. № 7. P. 762–771. https://doi.org/10.1111/j.1365-2109.2008.02147.x

  21. Hochachka P.W., Somero G.N. 2002. Biochemical adaptation: mechanism and process in physiological evolution. N.Y.: Oxford Univ. Press, 466 p.

  22. Hunt A.O., Oxkan F.E., Engin K., Tekelioglu N. 2011. The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax) // Aquacult. Int. V. 19. № 1. P. 51–61. https://doi.org/10.1007/s10499-010-9340-9

  23. Jamieson G.R. 1975. GLS identification techniques for long-chain unsaturated fatty acids // J. Chromatogr. Sci. V. 13. № 10. P. 491–497. https://doi.org/10.1093/chromsci/13.10.491

  24. Jana L., Huang X., Zhang L., Zhuang P. 2006. Hematological parameters of Amur sturgeon, Acipenser schrencki, during different salinity domestication // Mar. Fish. V. 28. P. 177–184.

  25. Kültz D. 2015. Physiological mechanisms used by fish to cope with salinity stress // J. Exp. Biol. V. 218. № 12. P. 1907–1914. https://doi.org/10.1242/jeb.118695

  26. Li H.-O., Yamada J. 1992. Changes of the fatty acid composition in smolts of Masu salmon (Oncorhynchus masou), associated with desmoltification and seawater transfer // Comp. Biochem. Physiol. A. V. 103. № 1. P. 221–226. https://doi.org/10.1016/0300-9629(92)90266-S

  27. Li S., He F., Wen H. et al. 2017. Low salinity affects cellularity, DNA methylation, and mRNA expression of igf1 in the liver of half smooth tongue sole (Cynoglossus semilaevis) // Fish Physiol. Biochem. V. 43. № 6. P. 1587–1602. https://doi.org/10.1007/s10695-017-0395-7

  28. Logue J.A., Howell B.R., Bell J.G., Cossins A.R. 2000. Dietary n-3 long-chain polyunsaturated fatty acid deprivation, tissue lipid composition, ex vivo prostaglandin production, and stress tolerance in juvenile Dover sole (Solea solea L.) // Lipids. V. 35. №. 7. P. 745–755. https://doi.org/10.1007/s11745-000-0581-3

  29. Mancera J.M., McCormick S.D. 2007. Role of prolactin, growth hormone, insuline-like growth factor and cortisol in teleost osmoregulation // Fish Osmoregulation. N.Y.: Sci. Pub. P. 497–515. https://doi.org/10.1201/9780429063909

  30. Marshall W.S. 2002. Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis // J. Exp. Zool. V. 292. № 3. P. 264–293. https://doi.org/10.1002/jez.10127

  31. Martins Y.S., Melo R.M.C., Campos-Junior P.H.A. et al. 2014. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae // Gen. Comp. Endocrinol. V. 202. P. 50–58. https://doi.org/10.1016/j.ygcen.2014.03.047

  32. McKenzie D.J., Cataldi E., Romano P. et al. 2001. Effects of acclimation to brackish water on tolerance of salinity challenge by young-of-the-year Adriatic sturgeon (Acipenser naccarii) // Can. J. Fish. Aquat. Sci. V. 58. № 6. P. 1113–1121. https://doi.org/10.1139/f01-058

  33. Mustafa T., Srivastava K.C. 1989. Prostaglandins (eicosanoids) and their role in ectothermic organisms // Adv. Comp. Environ. Physiol. V. 5. P. 157–207. https://doi.org/10.1007/978-3-642-74510-2_6

  34. Robertson J.C., Hazel J.R. 1999. Influence of temperature and membrane lipid composition on the osmotic water permeability of teleost gills // Physiol. Biochem. Zool. V. 72. № 5. P. 623–632. https://doi.org/10.1086/316699

  35. Sangiao-Alvarellos S., Arjona F.J., Martín del Río M.P. et al. 2005. Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus // J. Exp. Biol. V. 208. № 22. P. 4291–4304. https://doi.org/10.1242/jeb.01900

  36. Sarkheil M., Sorki M.P., Raefipour H. 2017. Effects of acclimation to seawater salinity on some blood parameters in wild Caspian brown trout, Salmo trutta caspius // Comp. Clin. Pathol. V. 26. № 6. P. 1315–1318. https://doi.org/10.1007/s00580-017-2531-2

  37. Si Y., Wen H., Li Y. et al. 2018. Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis // BMC Genomics. V. 19. Article 464. https://doi.org/10.1186/s12864-018-4825-4

  38. Soengas J.L., Sangiao-Alvarellos S., Laiz-Carrio’n R., Mancera J.M. 2007. Energy metabolism and osmotic acclimation in teleost fish // Fish osmoregulation. N.Y.: Sci. Pub. P. 277–308. https://doi.org/10.1201/9780429063909

  39. Tocher D.R., Sargent J.R. 1987. The effects of calcium ionophore A23187 on the metabolism of arachidonic and eicosapentaenoic acids in neutrophils from a marine teleost fish rich in (n-3) polyunsaturated fatty acids // Comp. Biochem. Physiol. B. V. 87. № 4. P. 733–739. https://doi.org/10.1016/0305-0491(87)90381-6

  40. Tocher D.R., Castell J.D., Dick J.R., Sargent J.R. 1995. Effects of salinity on the fatty acid compositions of total lipid and individual glycerophospholipid classes of Atlantic salmon (Salmo salar) and turbot (Scophthalmus maximus) cells in culture // Fish Physiol. Biochem. V. 14. № 2. P. 125–137. https://doi.org/10.1007/BF00002456

  41. Tocher D.R., Bendiksen E.A., Campbell P.J., Bell J.G. 2008. The role of phospholipids in nutrition and metabolism of teleost fish // Aquaculture. V. 280. № 1–4. P. 21–34. https://doi.org/10.1016/j.aquaculture.2008.04.034

  42. Vargas-Chacoff L., Saavedra E., Oyarzun R. et al. 2015. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities // Fish Physiol. Biochem. V. 41. № 6. P. 1369–1381. https://doi.org/10.1007/s10695-015-0092-3

  43. Wedermeyer G.A., Saunders R.L., Clarke W.C. 1980. Environmental factors affecting smoltification and early marine survival of anadromous salmonids // Mar. Fish. Rev. V. 42. № 6. P. 1–14.

  44. Zwingelstein G., Bodennec J. 1998. Phospholipid metabolism in euryhaline fish and crustaceans. Effects of environmental salinity and temperature // Recent Res. Dev. Lipids Res. V. 2. P. 39–52.

Дополнительные материалы отсутствуют.