Коллоидный журнал, 2023, T. 85, № 5, стр. 593-618

Коллоидные системы доставки этопозида на основе биодеградируемых полимерных носителей (обзор литературы)

М. А. Меркулова 1*, Н. С. Осипова 1, А. В. Калистратова 1, Ю. В. Ермоленко 1, С. Э. Гельперина 1

1 Российский химико-технологический университет им. Д.И. Менделеева
125047 Москва, Миусская площадь, 9, Россия

* E-mail: ma.merk@mail.ru

Поступила в редакцию 20.06.2023
После доработки 03.08.2023
Принята к публикации 03.08.2023

Аннотация

В обзоре рассмотрены системы доставки этопозида на основе коллоидных носителей – полимерных наночастиц и мицелл из синтетических и природных полимеров. Этопозид, ингибитор топоизомеразы II, занимает важное место в химиотерапии ряда опухолей, однако его применение часто ограничено ввиду выраженных побочных эффектов. Использование коллоидных систем доставки позволяет изменить фармакокинетические параметры этопозида и повысить его накопление в опухолях, что приводит к усилению противоопухолевого эффекта. Особый интерес представляют стимул-чувствительные системы, реагирующие на специфические условия в микроокружении опухоли, что позволяет значительно повысить селективность действия препарата.

Ключевые слова: этопозид, системы доставки, полимерные наночастицы

Список литературы

  1. Hande K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor // European Journal of Cancer. 1998. V. 34. № 10. P. 1514–1521. https://doi.org/10.1016/S0959-8049(98)00228-7

  2. Примерный перечень основных лекарственных средств, 21-й перечень, 2019 г. Копенгаген: Европейское региональное бюро ВОЗ; 2020. Лицензия: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/331990/WHO-EURO-2020-476-40211-53802-rus.pdf?sequence=1&isAllowed=y.

  3. Agrawal K. Etoposide // xPharm: The Comprehensive Pharmacology Reference. 2007. P. 1–5. https://doi.org/10.1016/B978-008055232-3.61729-5

  4. Slevin M.L. The clinical pharmacology of etoposide // Cancer. 1991. V. 67. № S1. P. 319–329. https://doi.org/10.1002/1097-0142(19910101)67: 1+<319::AID-CNCR2820671319>3.0.CO;2-D

  5. Montecucco A., Zanetta F., Biamonti G. Molecular mechanisms of etoposide // EXCLI Journal. Leibniz Research Centre for Working Environment and Human Factors. 2015. V. 14. P. 95–108. https://doi.org/10.17179/excli2014-561

  6. Baldwin E.L., Osheroff N. Etoposide, topoisomerase II and cancer // Current Medicinal Chemistry-Anti-Cancer Agents. 2005. V. 5. № 4. P. 363–372. https://doi.org/10.2174/1568011054222364

  7. Kroschinsky F.P., Friedrichsen K., Mueller J. et al. Pharmacokinetic comparison of oral and intravenous etoposide in patients treated with the CHOEP-regimen for malignant lymphomas // Cancer Chemother. Pharmacol. 2008. V. 61. P. 785–790. https://doi.org/10.1007/s00280-007-0535-3

  8. Shah J.C., Chen J.R., Chow D. Preformulation study of etoposide: Identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide // Pharmaceutical Research. 1989. V. 6. P. 408–412. https://doi.org/10.1023/A:1015935532725

  9. Siderov J., Prasad P., De Boer R., Desai J. Safe administration of etoposide phosphate after hypersensitivity reaction to intravenous etoposide // British Journal of Cancer. 2002. V. 86. № 1. P. 12–13. https://doi.org/10.1038/sj.bjc.6600003

  10. Hoetelmans R.M.W., Schornagel J.H., ten Bokkel Huinink W.W., Beijnen J.H. Hypersensitvity reactions to etoposide // Annals of Pharmacotherapy. 1996. V. 30. № 4. P. 367–371. https://doi.org/10.1177/106002809603000409

  11. Bernstein B.J., Troner M.B. Successful rechallenge with etoposide phosphate after an acute hypersensitivity reaction to etoposide // Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 1999. V. 19. № 8. P. 989–991. https://doi.org/10.1592/phco.19.11.989.31566

  12. Zhao W. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy // Nat. Prod. Rep. 2021. V. 38. № 3. P. 470–488. https://doi.org/10.1039/d0np00041h

  13. Махачева Ф.А., Валиев Т.Т. Особенности вторичного острого миелоидного лейкоза у детей // Онкогематология. 2020. Т. 15. № 4. С. 12–17. https://doi.org/10.17650/1818-8346-2020-15-4-12-17

  14. Zhang M., Hagan C.T., Foley H. et al. Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models // Acta Biomaterialia. 2021. V. 124. P. 327–335. https://doi.org/10.1016/j.actbio.2021.02.001

  15. Rafiyath S. M., Rasul M., Lee B., Wei G., Lamba G., Liu D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis // Exp. Hematol. Oncol. 2012. V. 1. P. 1–10. https://doi.org/10.1186/2162-3619-1-10

  16. Фармакопея РФ. Требования к показателям качества и исследованию лекарственных средств на основе липосом, мицелл и лекарственных средств, содержащих покрытия из наночастиц. https://pharmacopoeia.ru/trebovaniya-k-pokazatelyam-kachestva-i-issledovaniyu-lekarstvennyh-sredstv-na-osnove-liposom-mitsell-ilekarsvtennyh-sredstv-soderzhashhih-pokrytiya-iz-nanochastits/#%D0%A0%D0%90%D0%97%D0%94%D0%95%D0%9B_2_%D0%A0%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BB%D0%B5%D0%BA%D0%B0%D1%80%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%B5%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D0%B2_%D0%BD%D0%B0_%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B5_%D0%BC%D0%B8%D1%86%D0%B5%D0%BB%D0%BB_%D0%B1%D0%BB%D0%BE%D0%BA-%D1%81%D0%BE%D0%BF%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D0%BE%D0%B2 (обращение 20 июля 2022).

  17. US FDA. Drug Products, Including Biological Products, that Contain Nanomaterials. Guidance for Industry, April 2022. https://www.fda.gov/media/157812.

  18. Sindhwani S., Syed, A. M., Ngai J. et al. The entry of nanoparticles into solid tumours // Nature Materials. 2020. V. 19. № 5. P. 566–575. https://doi.org/10.1038/s41563-019-0566-2

  19. Malinovskaya J., Salami R., Valikhov M. et al. Supermagnetic human serum albumin (HSA) nanoparticles and PLGA-based doxorubicin nanoformulation: A duet for selective nanotherapy // Int. J. Mol. Sci. 2023. V. 24. P. 627.https://doi.org/10.3390/ijms24010627

  20. Yuan Z.Q., Chen W.L., You B.G. et al. Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor // JCR. 2017. V. 268. P. 198–211. https://doi.org/10.1016/j.jconrel.2017.10.025

  21. Huang H.L., Lin W.J. Dual peptide-modified nanoparticles improve combination chemotherapy of etoposide and siPIK3CA against drug-resistant small cell lung carcinoma // Pharmaceutics. 2020. V. 12. № 3. P. 254. https://doi.org/10.3390/pharmaceutics12030254

  22. Bai J., Tian Y., Liu F. et al. Octreotide-conjugated core-cross-linked micelles with pH/redox responsivity loaded with etoposide for neuroendocrine neoplasms therapy and bioimaging with photoquenching resistance // ACS Appl Mater Interface. 2019. V. 11. № 20. P. 18111–18122. https://doi.org/10.1021/acsami.9b01827

  23. Kuo Y.C., Chang Y.H., Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid // Mater. Sci. Eng. C. 2019. V. 96. P. 114–128. https://doi.org/10.1016/j.msec.2018.10.094

  24. Cohen Y., Levi M., Lesmes U., Margier M., Reboul E., Livney Y.D. Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model // Food & Function. 2017. V. 8. № 6. P. 2133–2141. https://doi.org/10.1039/c7fo00323d

  25. Naumenko V.A., Vlasova K.Y., Garanina A.S. et al. Extravasating neutrophils open vascular barrier and improve liposomes delivery to tumors // ACS Nano. 2019. V. 13. № 11. P. 12599–12612. https://doi.org/10.1021/acsnano.9b03848

  26. Lin Q., Fathi P., Chen X. Nanoparticle delivery in vivo: A fresh look from intravital imaging // EBioMedicine. 2020. V. 59. P. 102958. https://doi.org/10.1016/j.ebiom.2020.102958

  27. Golombek S.K. et al. Tumor targeting via EPR: Strategies to enhance patient responses // Advanced Drug Delivery Reviews. 2018. V. 130. P. 17–38. https://doi.org/10.1016/j.addr.2018.07.007

  28. Kakkar A., Traverso G., Farokhzad O.C., Weissleder R., Langer R. Evolution of macromolecular complexity in drug delivery systems // Nat. Rev. Chem. 2017. V. 1. № 8. P. 0063. https://doi.org/10.1038/s41570-017-0063

  29. Mitchell M.J., Billingsley M.M., Haley R.M. et al. Engineering precision nanoparticles for drug delivery // Nat. Rev. Drug Discov. 2021. V. 20. № 2. P. 101–124. https://doi.org/10.1038/s41573-020-0090-8

  30. Takechi-Haraya Y., Ohgita T., Demizu Y., Saito H., Izutsu K.I., Sakai-Kato K. Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle-based drug formulations // AAPS PharmSciTech. 2022. V. 23. № 5. P. 150. https://doi.org/10.1208/s12249-022-02303-y

  31. Nel A.E., Mädler L., Velegol D. et al. Understanding biophysicochemical interactions at the nano–bio interface // Nature Materials. 2009. V. 8. № 7. P. 543–557. https://doi.org/10.1038/nmat2442

  32. Skalickova S., Nejdl L., Kudr J. et al. Fluorescence characterization of gold modified liposomes with antisense N-myc DNA bound to the magnetisable particles with encapsulated anticancer drugs (doxorubicin, ellipticine and etoposide) // Sensors. 2016. V. 16. № 3. P. 290. https://doi.org/10.3390/s16030290

  33. Mehrabi M., Esmaeilpour P., Akbarzadeh A. et al. Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines // Turk. J. Med. Sci. 2016. V. 46. № 2. P. 567–571. https://doi.org/10.3906/sag-1412-67

  34. Deng W., Chen W., Clement S. et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation // Nat. Commun. 2018. V. 9. № 1. 2713. https://doi.org/10.1038/s41467-018-05118-3

  35. Varshosaz J., Hassanzadeh F., Sadeghi-Aliabadi H., Firozian F. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles // Biomed. Res. Int. 2014. V. 2014. https://doi.org/10.1155/2014/708593

  36. Qian W.Y., Sun D. M., Zhu R.R. et al. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release // Int. J. Nanomedicine. 2012. P. 5781–5792. https://doi.org/10.2147/IJN.S34773

  37. Zhu R., Wang Q., Zhu Y. et al. pH sensitive nano layered double hydroxides reduce the hematotoxicity and enhance the anticancer efficacy of etoposide on non-small cell lung cancer // Acta Biomaterialia. 2016. V. 29. P. 320–332. https://doi.org/10.1016/j.actbio.2015.10.029

  38. Snehalatha M., Venugopal K., Saha R.N. Etoposide-loaded PLGA and PCL nanoparticles I: Preparation and effect of formulation variables // Drug Delivery. 2008. V. 15. № 5. P. 267–275. https://doi.org/10.1080/10717540802174662

  39. Yadav K.S., Chuttani K., Mishra A.K. et al. Long circulating nanoparticles of etoposide using PLGA-MPEG and PLGA-pluronic block copolymers: Characterization, drug-release, blood-clearance, and biodistribution studies // Drug Dev. Res. 2010. V. 71. № 4. P. 228–239. https://doi.org/10.1002/ddr.20365

  40. Yadav K.S., Sawant K.K. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation // Curr. Drug Deliv. 2010. V. 7. № 1. P. 51–64. https://doi.org/10.2174/156720110790396517

  41. Wang Z., Li Z., Zhang D. et al. Development of etoposide-loaded bovine serum albumin nanosuspensions for parenteral delivery // Drug Delivery. 2015. V. 22. № 1. P. 79–85. https://doi.org/10.3109/10717544.2013.871600

  42. Kuo Y.C., Lee C.H. Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with ρ-aminophenyl-α-D-manno-pyranoside and folic acid // J. Pharm. Sci. 2015. V. 104. № 5. P. 1804–1814. https://doi.org/10.1002/jps.24388

  43. Kuo Y.C., Wang I.H. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody-and tamoxifen-conjugated solid lipid nanoparticles // J. Drug Target. 2016. V. 24. № 7. P. 645–654. https://doi.org/10.3109/1061186X.2015.1132223

  44. Jin G.W., Rejinold N.S., Choy J.H. Multifunctional polymeric micelles for cancer therapy // Polymers. 2022. V. 14. № 22. P. 4839. https://doi.org/10.3390/polym14224839

  45. Ahmad I., Pandit J., Sultana Y. et al. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study // Mater. Sci. Eng. C. 2019. V. 100. P. 959–970. https://doi.org/10.1016/j.msec.2019.03.060

  46. Zhu Y., Zhu R., Wang M. et al. Anti-metastatic and anti-angiogenic activities of core–shell SiO2@LDH loaded with etoposide in non-small cell lung cancer // Advanced Science. 2016. V. 3. № 11. P. 1600229. https://doi.org/10.1002/advs.201600229

  47. Jo M.J., Shin H.J., Yoon M.S. et al. Evaluation of pH-sensitive polymeric micelles using citraconic amide bonds for the co-delivery of paclitaxel, etoposide, and rapamycin // Pharmaceutics. 2023. V. 15. № 1. P. 154. https://doi.org/10.3390/pharmaceutics15010154

  48. Abdel-Bar H.M., Walters A.A., Wang J.T.W., Al-Jamal K.T. Combinatory delivery of etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model // Adv. Healthc. Mater. 2021. V. 10. № 7. P. 2001853. https://doi.org/10.1002/adhm.202001853

  49. Maleki H., Naghibzadeh M., Amani A. et al. Preparation of paclitaxel and etoposide co-loaded MPEG-PL-GA nanoparticles: An investigation with artificial neural network // J. Pharm. Innov. 2021. V. 16. P. 11–25. https://doi.org/10.1007/s12247-019-09419-y

  50. Maleki H., Najafabadi M.R.H., Webster T.J. et al. Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma // Int. J. Pharm. 2021. V. 604. P. 120722. https://doi.org/10.1016/j.ijpharm.2021.120722

  51. Kovshova T., Mantrov S., Boiko S. et al. Co-delivery of paclitaxel and etoposide prodrug by human serum albumin and PLGA nanoparticles: Synergistic cytotoxicity in brain tumour cells // J. Microencapsul. 2023. V. 40. № 4. P. 246–262. https://doi.org/10.1080/02652048.2023.2188943

  52. Lim C., Ramsey J.D., Hwang D. et al. Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs // Small. 2022. V. 18. № 4. P. 2103552. https://doi.org/10.1002/smll.202103552

  53. Rezvantalab S., Drude N.I., Moraveji M.K. et al. P-LGA-based nanoparticles in cancer treatment // Front. Pharmacol. 2018. V. 9. P. 1260. https://doi.org/10.3389/fphar.2018.01260

  54. Casalini T., Rossi F., Castrovinci A., Perale G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications // Front. Bioeng. Biotechnol. 2019. V. 7. P. 259. https://doi.org/10.3389/fbioe.2019.00259

  55. Operti M.C., Bernhardt A., Grimm S. et al. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up // Int. J. Pharm. 2021. V. 605. P. 120807. https://doi.org/10.1016/j.ijpharm.2021.120807

  56. Park K., Otte A., Sharifi F. et al. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles // Journal of Controlled Release. 2021. V. 329. P. 1150–1161. https://doi.org/10.1016/j.jconrel.2020.10.044

  57. Callewaert M., Dukic S., Van Gulick L. et al. Etoposide encapsulation in surface-modified poly(lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency // J. Biomed. Mater. Res. A. 2013. V. 101 A. № 5. P. 1319–1327. https://doi.org/10.1002/jbm.a.34442

  58. Saadati R., Dadashzadeh S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: In vitro and in vivo evaluation // Int. J. Pharm. 2014. V. 464. № 1–2. P. 135–144. https://doi.org/10.1016/j.ijpharm.2014.01.014

  59. Yadav K.S., Jacob S., Sachdeva G., Sawant K.K. Intracellular delivery of etoposide loaded biodegradable nanoparticles: Cytotoxicity and cellular uptake studies // J. Nanosci. Nanotechnol. 2011. V. 11. № 8. P. 6657–6667. https://doi.org/10.1166/jnn.2011.4225

  60. Rivas C.J.M., Tarhini M., Badri W. et al. Nanoprecipitation process: From encapsulation to drug delivery // Int. J. Pharm. 2017. V. 532. № 1. P. 66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064

  61. Callewaert M., Dukic S., Van Gulick L. et al. Etoposide encapsulation in surface-modified poly (lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency // J. Biomed. Mater. Res. A. 2013. V. 101. № 5. P. 1319–1327. https://doi.org/10.1002/jbm.a.34442

  62. Kovshova T., Osipova N., Alekseeva A. et al. Exploring the interplay between drug release and targeting of lipid-like polymer nanoparticles loaded with doxorubicin // Molecules. 2021. V. 26. № 4. P. 831. https://doi.org/10.3390/molecules26040831

  63. Stipa P., Marano S., Galeazzi R. et al. Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations // Eur. Polym. J. 2021. V. 147. P. 110292. https://doi.org/10.1016/j.eurpolymj.2021.110292

  64. Ермоленко Ю.В., Семёнкин А.С., Ульянова Ю.В., Ковшова Т.С., Максименко О.О., Гельперина С.Э. Роль гидролитической деградации полилактидных носителей при разработке нано- и микроразмерных лекарственных форм на их основе // Известия Академии наук. Серия химическая. 2020. Т. 8. С. 1416–1427.

  65. D’Souza S.A. Review of in vitro drug release test methods for nano-sized dosage forms // Advances in pharmaceutics. 2014. V. 2014. P. 1–12. https://doi.org/10.1155/2014/304757

  66. Pimple S., Manjappa A.S., Ukawala M., Murthy R.S.R. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: In vitro cell line study to ensure advantage of combination therapy // Cancer Nanotechnol. 2012. V. 3. P. 25–36. https://doi.org/10.1007/s12645-012-0027-y

  67. Yadav R., Kumar D., Kumari A. et al. Encapsulation of podophyllotoxin and etoposide in biodegradable poly-D,L-lactide nanoparticles improved their anticancer activity // J. Microencapsul. 2014. V. 31. № 3. P. 211–219. https://doi.org/10.3109/02652048.2013.834988

  68. Singh V., Sahebkar A., Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery // Eur. Polym. J. 2021. V. 158. P. 110683. https://doi.org/10.1016/j.eurpolymj.2021.110683

  69. Посыпанова Г.А., Горшкова Л.Б., Родина А.В. и др. Характеристика противоопухолевой активности полимерной формы этопозида в составе биодеградируемого сополимера молочной и гликолевой кислот // Химико-фармацевтический журнал. 2016. P. 45–49.

  70. Mitra M., Dilnawaz F., Misra R. et al. Toxicogenomics of nanoparticulate delivery of etoposide: Potential impact on nanotechnology in retinoblastoma therapy // Cancer Nanotechnol. 2011. V. 2. № 1–6. P. 21–36. https://doi.org/10.1007/s12645-010-0010-4

  71. Schaefer M.J., Singh J. Effect of tricaprin on the physical characteristics and in vitro release of etoposide from PLGA microspheres // Biomaterials. 2002. V. 23. № 16. P. 3465–3471. https://doi.org/10.1016/S0142-9612(02)00053-4

  72. Moghimi S.M., Hunter A.C., Andresen T.L. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective // Annu. Rev. Pharmacol. 2012. V. 52. P. 481–503. https://doi.org/10.1146/annurev-pharmtox-010611-134623

  73. Yadav K.S., Chuttani K., Mishra A.K., Sawant K.K. Effect of size on the biodistribution and blood clearance of etoposide-loaded PLGA nanoparticles // PDA J. Pharm. Sci. Technol. 2011. V. 65. № 2. P. 131–139.

  74. Snehalatha M., Kolachina V., Saha R.N. et al. Enhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton’s lymphoma tumor bearing mice // J. Pharm. Bioallied Sci. 2013. V. 5. № 4. P. 290–297. https://doi.org/10.4103/0975-7406.120081

  75. Sarfarazi A., Lee G., Mirjalili S.A. et al. Therapeutic delivery to the peritoneal lymphatics: Treatment benefits and future prospects // Int. J. Pharm. 2019. V. 567. P. 118456. https://doi.org/10.1016/j.ijpharm.2019.118456

  76. Lee G., Han S., Inocencio I., Cao E. et al. Lymphatic uptake of liposomes after intraperitoneal administration primarily occurs via the diaphragmatic lymphatics and is dependent on liposome surface properties // Mol. Pharm. 2019. V. 16. № 12. P. 4987–4999. https://doi.org/10.1021/acs.molpharmaceut.9b00855

  77. Malinovskaya Y., Melnikov P., Baklaushev V. et al. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells // Int. J. Pharm. 2017. V. 524. № 1–2. P. 77–90. https://doi.org/10.1016/j.ijpharm.2017.03.049

  78. Kuo Y.C., Chen Y.C. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles // Int. J. Pharm. 2015. V. 479. № 1. P. 138–149. https://doi.org/10.1016/j.ijpharm.2014.12.070

  79. Lagas J.S., Fan L., Wagenaar E. et al. P-Glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide // Clin. Cancer Res. 2010. V. 16. № 1. P. 130–140. https://doi.org/10.1158/1078-0432.CCR-09-1321

  80. Kuplennik N., Lang K., Steinfeld R., Sosnik A. Folate receptor α-modified nanoparticles for targeting of the central nervous system // ACS Appl. Mater. Interface. 2019. V. 11. № 43. P. 39633–39647. https://doi.org/10.1021/acsami.9b14659

  81. Godse R., Rathod M., De A., Shinde U. Intravitreal galactose conjugated polymeric nanoparticles of etoposide for retinoblastoma // J. Drug Deliv. Sci. Technol. 2021. V. 61. P. 102259. https://doi.org/10.1016/j.jddst.2020.102259

  82. Pan J., Rostamizadeh K., Filipczak N., Torchilin V.P. Polymeric co-delivery systems in cancer treatment: An overview on component drugs' dosage ratio effect // Molecules. 2019. V. 24. № 6. P. 1035. https://doi.org/10.3390/molecules24061035

  83. Fatma S., Talegaonkar S., Iqbal Z. et al. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: An in vitro, ex vivo and in vivo investigations // Drug Delivery. 2016. V. 23. № 2. P. 500–511. https://doi.org/10.3109/10717544.2014.923956

  84. Espinoza S.M., Patil H.I., San Martin Martinez E., Casañas Pimentel R., Ige P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer // Int. J. Polym. Mater. 2020. V. 69. № 2. P. 85–126. https://doi.org/10.1080/00914037.2018.1539990

  85. Kalita N.K., Bhasney S.M., Mudenur C. et al. End-of-life evaluation and biodegradation of poly(lactic acid)(PLA)/polycaprolactone (PCL)/microcrystalline cellulose (MCC) polyblends under composting conditions // Chemosphere. 2020. V. 247. P. 125875. https://doi.org/10.1016/j.chemosphere.2020.125875

  86. Vivek K., Harivardhan Reddy L., Murthy R.S.R. Comparative study of some biodegradable polymers on the entrapment efficiency and release behavior of etoposide from microspheres // Pharm. Dev. Technol. 2007. V. 12. № 1. P. 79–88. https://doi.org/10.1080/10837450601168581

  87. Kuo Y.C., Wang I.H. Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme // J. Taiwan Inst. Chem. Eng. 2017. V. 77. P. 73–82. https://doi.org/10.1016/j.jtice.2017.05.003

  88. Xu Y., Tang L., Liu Y. et al. Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy // Colloids Surf. B. 2021. V. 201. P. 111642. https://doi.org/10.1016/j.colsurfb.2021.111642

  89. Xie P., Yan J., Wu M. et al. CD44 potentiates hepatocellular carcinoma migration and extrahepatic metastases via the AKT/ERK signaling CXCR4 axis // Annals of Translational Medicine. 2022. V. 10. № 12. P. 689. https://doi.org/10.21037/atm-22-2482

  90. Spada A., Emami J., Tuszynski J.A., Lavasanifar A. The uniqueness of albumin as a carrier in nanodrug delivery // Mol. Pharm. 2021. V. 18. № 5. P. 1862–1894. https://doi.org/10.1021/acs.molpharmaceut.1c00046

  91. Manjushree M., Revanasiddappa H.D. Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking // Chemical Physics. 2020. V. 530. P. 110593. https://doi.org/10.1016/j.chemphys.2019.110593

  92. Akdogan Y., Reichenwallner J., Hinderberger D. Evidence for water-tuned structural differences in proteins: An approach emphasizing variations in local hydrophilicity // PLOS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0045681

  93. Osipova N., Budko A., Maksimenko O. et al. Comparison of compartmental and non-compartmental analysis to detect biopharmaceutical similarity of intravenous nanomaterial-based rifabutin formulations // Pharmaceutics. 2023. V. 15. № 4. P. 1258. https://doi.org/10.3390/pharmaceutics15041258

  94. Elgohary M.M., Helmy M.W., Mortada S.M., Elzoghby A.O. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer // Nanomedicine. 2018. V. 13. № 17. P. 2221–2224. https://doi.org/10.2217/nnm-2018-0097

  95. Narayana R.V.L., Jana P., Tomar N. et al. Carboplatin- and etoposide-loaded lactoferrin protein nanoparticles for targeting cancer stem cells in retinoblastoma in vitro // IOVS. 2021. V. 62. № 14. P. 13. https://doi.org/10.1167/iovs.62.14.13

  96. Akbal Ö., Erdal E., Vural T. et al. Comparison of protein- and polysaccharide-based nanoparticles for cancer therapy: Synthesis, characterization, drug release, and interaction with a breast cancer cell line // Artificial Cells, Nanomedicine, and Biotechnology. 2017. V. 45. № 2. P. 193–203. https://doi.org/10.3109/21691401.2016.1170694

  97. Raval N., Maheshwari R., Shukla H. et al. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer // Mater. Sci. Eng. C. 2021. V. 126. P. 112186. https://doi.org/10.1016/j.msec.2021.112186

  98. Hwang D., Ramsey J.D., Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval // Adv. Drug Deliv. Rev. 2020. V. 156. P. 80–118. https://doi.org/10.1016/j.addr.2020.09.009

  99. Mohanty A.K., Dilnawaz F., Mohanty C., Sahoo S.K. Etoposide-loaded biodegradable amphiphilic methoxy (poly ethylene glycol) and poly (epsilon caprolactone) copolymeric micelles as drug delivery vehicle for cancer therapy // Drug Delivery. 2010. V. 17. № 5. P. 330–342. https://doi.org/10.3109/10717541003720688

  100. Letchford K., Liggins R., Burt H. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations // J. Pharm. Sci. 2008. V. 97. № 3. P. 1179–1190. https://doi.org/10.1002/jps.21037

  101. Chen L., Tan L., Zhang X. et al. Which polymer is more suitable for etoposide: A comparison between two kinds of drug loaded polymeric micelles in vitro and in vivo? // Int. J. Pharm. 2015. V. 495. № 1. P. 265–275. https://doi.org/10.1016/j.ijpharm.2015.08.043

  102. Ukawala M., Rajyaguru T., Chaudhari K. et al. Investigation on design of stable etoposide-loaded PEG-PCL micelles: Effect of molecular weight of PEG-PCL diblock copolymer on the in vitro and in vivo performance of micelles // Drug Delivery. 2012. V. 19 № 3. P. 155–167. https://doi.org/10.3109/10717544.2012.657721

  103. Shin H.C., Alani A.W., Rao D.A., Rockich N.C., Kwon G.S. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs // J. Control Release. 2009. V. 140. № 3. P. 294–300. https://doi.org/10.1088/1361-6528/aa66ba

  104. Tsend-Ayush A., Zhu X., Ding Y., Yao J., Yin L., Zhou J., Yao J. Lactobionic acid-conjugated TPGS nanoparticles for enhancing therapeutic efficacy of etoposide against hepatocellular carcinoma // Nanotechnology. 2017. V. 28. № 19. P. 195602. https://doi.org/10.1088/1361-6528/aa66ba

  105. Zhu X., Tsend-Ayush A., Yuan Z. et al. Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy // Int. J. Pharm. 2017. V. 529. № 1–2. P. 451–464. https://doi.org/10.1016/j.ijpharm.2017.07.011

  106. Varshosaz J., Hassanzadeh F., Sadeghi H., Firozian F., Mirian M. Optimization of self-assembling properties of fatty acids grafted to methoxy poly(ethylene glycol) as nanocarriers for etoposide // Acta Pharm. 2012. V. 62. № 1. P. 31–44. https://doi.org/10.2478/v10007-012-0006-1

  107. Mudhakir D., Sukmadjaja S.A., Yeyet C.S. Packaging the alkaloids of cinchona bark in combination with etoposide in polymeric micelles nanoparticles // Int. J. Pharm. Sci. 2012. V. 6. № 12. P. 685–689. https://doi.org/10.5281/zenodo.1327853

  108. Na H.S., Lim Y.K., Jeong Y.I., Lee H.S., Lim Y.J., Kang M.S., Cho C.S., Lee H.C. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model // Int. J. Pharm. 2010. V. 383. № 1–2. P. 192–200. https://doi.org/10.1016/j.ijpharm.2009.08.041

  109. Lim C., Dismuke T., Malawsky D. et al. Enhancing CDK4/6 inhibitor therapy for medulloblastoma using nanoparticle delivery and scRNA-seq–guided combination with sapanisertib // Sci. Adv. 2022. V. 8. № 4. P. eabl5838. https://doi.org/10.1126/sciadv.abl5838

  110. Wan X., Min Y., Bludau H., Keith A., Sheiko S.S., Jordan R., Wang A.Z., Sokolsky-Papkov M., Kabanov A.V. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer // ACS Nano. 2018. V. 12. № 3. P. 2426–2439. https://doi.org/10.1021/acsnano.7b07878

  111. Kim J.-H., Emoto K., Iijima M., Nagasaki Y., Aoyagi T., Okano T., Sakurai Y., Kataoka K. Core-stabilized polymeric micelle as potential drug carrier: Increased solubilization of taxol // Polym. Adv. Technol. 1999. V. 10. № 11. P. 647–654. https://doi.org/10.1002/(SICI)1099-1581(199911)10: 11<647::AID-PAT918>3.0.CO;2-Y

  112. Wang F., Bronich T.K., Kabanov A.V., Rauh R.D., Roovers J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier // Bioconjug. Chem. 2005. V. 16. № 2. P. 397–405. https://doi.org/10.1021/bc049784m

  113. Wang F., Bronich T.K., Kabanov A.V., Rauh R.D., Roovers J. Synthesis and characterization of star poly(epsilon-caprolactone)-b-poly(ethylene glycol) and poly(L-lactide)-b-poly(ethylene glycol) copolymers: Evaluation as drug delivery carriers // Bioconjug. Chem. 2008. V. 19. № 7. P. 1423–1429. https://doi.org/10.1021/bc7004285

  114. Ukawala M., Rajyaguru T., Chaudhari K., Manjappa A.S., Murthy R.S.R., Gude R. EILDV-conjugated, etoposide-loaded biodegradable polymeric micelles directing to tumor metastatic cells overexpressing α4β1 integrin // Cancer Nanotechnology. 2011. V. 2. P. 133–145. https://doi.org/10.1007/s12645-011-0023-7

  115. Luiz M.T., Di Filippo L.D., Alves R.C. et al. The use of TPGS in drug delivery systems to overcome biological barriers // Eur. Polym. J. 2021. V. 142. P. 110129. https://doi.org/10.1016/j.eurpolymj.2020.110129

  116. Lagarrigue P., Moncalvo F., Cellesi F. Non-spherical polymeric nanocarriers for therapeutics: The effect of shape on biological systems and drug delivery properties // Pharmaceutics. 2023. V. 15. № 1. P. 32. https://doi.org/10.3390/pharmaceutics15010032

  117. Kennedy L., Sandhu J.K., Harper M.E., Cuperlovic-Culf M. Role of glutathione in cancer: From mechanisms to therapies // Biomolecules. 2020. V. 10. № 10. P. 1429. https://doi.org/10.3390/biom10101429

  118. Jo M.J., Shin H.J., Yoon M.S. et al. Evaluation of pH-sensitive polymeric micelles using citraconic amide bonds for the co-delivery of paclitaxel, etoposide, and rapamycin // Pharmaceutics. 2023. V. 15. № 1. P. 154. https://doi.org/10.3390/pharmaceutics15010154

  119. Varshosaz J., Hassanzadeh F., Sadeghi H., Firozian F., Mirian M. Effect of molecular weight and molar ratio of dextran on self-assembly of dextran stearate polymeric micelles as nanocarriers for etoposide // J. Nanomater. 2012. V. 2012. P. 120. https://doi.org/10.1155/2012/265657

  120. Agwa M.M., Abu-Serie M.M., Abdelmonsif D.A., Moussa N., Elsayed H., Khattab S.N., Sabra S. Vitamin D3/phospholipid complex decorated caseinate nanomicelles for targeted delivery of synergistic combination therapy in breast cancer // Int. J. Pharm. 2021. V. 607. 120965. https://doi.org/10.1016/j.ijpharm.2021.120965

  121. Carlberg C., Muñoz A. An update on vitamin D signaling and cancer // Seminars in Cancer Biology. 2022. V. 79. P. 217–230. https://doi.org/10.1016/j.semcancer.2020.05.018

  122. Gaber M., Elhasany K.A. et al. Co-administration of tretinoin enhances the anti-cancer efficacy of etoposide via tumor-targeted green nano-micelles // Colloids Surf. B. Biointerfaces. 2020. V. 192. P. 110997. https://doi.org/10.1016/j.colsurfb.2020.110997

  123. Alliot J., Theodorou I., Nguyen D.V., Forier C., Ducongé F., Grave E., Doris E. Tumor targeted micellar nanocarriers assembled from epipodophyllotoxin-based amphiphiles // Nanoscale. 2019. V. 11. № 19. P. 9756–9759. https://doi.org/10.1039/C9NR01068H

  124. Alliot J., Theodorou I., Ducongé F., Gravel E., Doris E. Polyamine transport system-targeted nanometric micelles assembled from epipodophyllotoxinamphiphiles // Chemical Communications. 2019. V. 55. № 99. P. 14968–14971. https://doi.org/10.1039/c9cc07883e

  125. Leonard A., Wolff J.E. Etoposide improves survival in high-grade glioma: A meta-analysis // Anticancer Research. 2013. V. 33. № 8. P. 3307–3315.

  126. Mehta A., Awah C.U., Sonabend A.M. Topoisomera-se II poisons for glioblastoma; Existing challenges and opportunities to personalize therapy // Frontiers in Neurology. 2018. V. 9. P. 459. https://doi.org/10.3389/fneur.2018.00459

  127. Lagas J.S., Fan L., Wagenaar E., Vlaming M.L., van Tellingen O., Beijnen J.H., Schinkel A.H. P-Glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide // Clin. Cancer Res. 2010. V. 16 № 1. P. 130–140. https://doi.org/10.1158/1078-0432.CCR-09-1321

  128. Bart J., Groen H.J., van der Graaf W.T., Hollema H., Hendrikse N.H., Vaalburg W., Sleijfer D.T., de Vries E.G. An oncological view on the blood−testis barrier // The Lancet Oncology. 2002. V. 3. № 6. P. 357–363. https://doi.org/10.1016/s1470-2045(02)00776-3

Дополнительные материалы отсутствуют.