Коллоидный журнал, 2023, T. 85, № 5, стр. 655-667
Концентрация наночастиц как важный параметр для характеристики дисперсий и ее применение в биомедицине
Т. Н. Паширова 1, *, З. М. Шайхутдинова 1, Э. Б. Соуто 2, 3, П. Массон 4, В. Ф. Миронов 1
1 Институт органической и физической химии им. А.Е. Арбузова,
ФИЦ Казанский научный центр РАН
420088 Казань, ул. Акад. Арбузова, 8, Россия
2 UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology,
Department of Drug Sciences, Faculty of Pharmacy, University of Porto
4050-313 Porto, Portugal
3 Associate Laboratory i4HB – Institute for Health and Bioeconomy,
Faculty of Pharmacy, University of Porto
4050-313 Porto, Portugal
4 Казанский (Приволжский) федеральный университет
420008 Казань, ул. Кремлевская, 18, Россия
* E-mail: tatyana_pashirova@mail.ru
Поступила в редакцию 26.06.2023
После доработки 03.08.2023
Принята к публикации 03.08.2023
- EDN: DLPFDE
- DOI: 10.31857/S0023291223600487
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
В настоящее время стоит острая необходимость в стандартизации методов определения концентрации наночастиц и создания эталонных материалов для калибровки измеряемой величины. Точное определение концентрации наночастиц необходимо для оценки максимальной дозы вводимых нанопрепаратов в области диагностики и терапии in vivo, определения порядка реакции при использовании ферментативных нанореакторов. Кроме того, данный параметр обуславливает биологические эффекты, такие как образование белковой короны, улучшение поглощения и интернализации с клетками и т.д. В обзоре представлены наиболее часто встречающиеся способы определения концентрации наночастиц, основанные на их прямой визуализации с использованием методов микроскопии, на поглощении или рассеянии света, прямого подсчета наночастиц и гравиметрии, обсуждены их достоинства, недостатки и способы усовершенствования. Показано, что для более надежного и достоверного определения концентрации наночастиц следует использовать комбинацию нескольких методов.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Clement S., Gardner B., Razali W.A.W. et al. Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method // Nanotechnology. 2017. V. 28. № 47. P. 475702. https://doi.org//10.1088/1361-6528/aa8d89
Ouyang B., Poon W., Zhang Y.-N. et al. The dose threshold for nanoparticle tumour delivery // Nat. Mater. 2020. V. 19. № 12. P. 1362–1371. https://doi.org//s41563-020-0755-z
Pashirova T., Shaihutdinova Z., Mansurova M. et al. Enzyme nanoreactor for in vivo detoxification of organophosphates // ACS Appl. Mater. Interfaces. 2022. V. 14. № 17. P. 19241–19252. https://doi.org/10.1021/acsami.2c03210
Shajhutdinova Z., Pashirova T., Masson P. Kinetic processes in enzymatic nanoreactors for in vivo detoxification // Biomedicines. 2022. V. 10. № 4. P. 784. https://doi.org/10.3390/biomedicines10040784
Pashirova T.N., Shaihutdinova Z.M., Mironov V.F., Masson P. Biomedical nanosystems for in vivo detoxification: From passive delivery systems to functional nanodevices and nanorobots // Acta Naturae. 2023. V. 15. № 1. P. 4–12. https://doi.org//2 10.32607/actanaturae.15681
Qian X., Nymann Westensee I., Brodszkij E., Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities // Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 2020. V. 13. № 3. P. e1683. https://doi.org/10.1002/wnan.1683
Driscoll D.F., Nicoli D.F. Analytical methods for determining the size (distribution) in parenteral dispersions // Non-Biological Complex Drugs. The Science and the Regulatory Landscape. 2015. V. 20. P. 193–259. https://doi.org/10.1007/978-3-319-16241-6_7
Soema P.C., Willems G.-J., Jiskoot W., Amorij J.-P., Kersten G.F. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach // Eur. J. Pharm. Biopharm. 2015. V. 94. P. 427–435. https://doi.org/10.1016/j.ejpb.2015.06.026
Mozafari M.R., Mazaheri E., Dormiani K. Simple equations pertaining to the particle number and surface area of metallic, polymeric, lipidic and vesicular nanocarriers // Sci. Pharm. 2021. V. 89. № 2. P. 15. https://doi.org/10.3390/scipharm89020015
Pidgeon C., Hunt C.A. Calculating number and surface area of liposomes in any suspension // J. Pharm. Sci. 1981. V. 70. № 2. P. 173–176. https://doi.org/10.1002/jps.2600700215
Epstein H., Afergan E., Moise T. et al. Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods // Biomaterials. 2006. V. 27. № 4. P. 651–659. https://doi.org/10.1016/j.biomaterials.2005.06.006
Vogel R., Savage J., Muzard J. et al. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? // J. Extracell. Vesicles. 2021. V. 10. № 3. P. e12052. https://doi.org/10.1002/jev2.12052
Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties // Nanoscale. 2018. V. 10. № 27. P. 12871–12934. https://doi.org/10.1039/C8NR02278J
Minelli C., Bartczak D., Peters R. et al. Sticky measurement problem: Number concentration of agglomerated nanoparticles // Langmuir. 2019. V. 35. № 14. P. 4927–4935. https://doi.org/10.1021/acs.langmuir.8b04209
Shard A.G., Wright L., Minelli C. Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry // Biointerphases. 2018. V. 13. № 6. P. 061002. https://doi.org/10.1116/1.5054780
Chithrani B.D., Ghazani A.A., Chan W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells // Nano Lett. 2006. V. 6. № 4. P. 662–668. https://doi.org/10.1021/nl052396o
Cho E.C., Xie J., Wurm P.A., Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant // Nano Lett. 2009. V. 9. № 3. P. 1080–1084. https://doi.org/10.1021/nl803487r
Yan H., Cacioppo M., Megahed S. et al. Influence of the chirality of carbon nanodots on their interaction with proteins and cells // Nat. Commun. 2021. V. 12. № 1. P. 7208. https://doi.org/10.1038/s41467-021-27406-1
Shang J., Gao X. Nanoparticle counting: Towards accurate determination of the molar concentration // Chem. Soc. Rev. 2014. V. 43. № 21. P. 7267–7278. https://doi.org/10.1039/C4CS00128A
Khlebtsov B.N., Khanadeev V.A., Khlebtsov N.G. Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra // Langmuir. 2008. V. 24. № 16. P. 8964–8970. https://doi.org/10.1021/la8010053
Baalousha M., Prasad A., Lead J.R. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force micro-scopy // Environ. Sci. Process. Impacts. 2014. V. 16. № 6. P. 1338–1347. https://doi.org/10.1039/C3EM00712J
Haiss W., Thanh N.T.K., Aveyard J., Fernig D.G. Determination of size and concentration of gold nanoparticles from UV−Vis spectra // Anal. Chem. 2007. V. 79. № 11. P. 4215–4221. https://doi.org/10.1021/ac0702084
Khlebtsov N.G. Determination of size and concentration of gold nanoparticles from extinction spectra // Anal. Chem. 2008. V. 80. № 17. P. 6620–6625. https://doi.org/10.1021/ac800834n
Paramelle D., Sadovoy A., Gorelik S. et al. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra // Analyst. 2014. V. 139. № 19. P. 4855. https://doi.org/10.1039/C4AN00978A
Хлебцов Б.Н., Ханадеев В.А., Хлебцов Н.Г. Определение размера, концентрации и показателя преломления наночастиц оксида кремния методом спектротурбидиметрии // Оптика и спектроскопия. 2008. Т. 105. № 5. С. 801–808.
Высоцкий В.В., Урюпина О.Я., Гусельникова А.В., Ролдугин В.И. О возможности определения концентрации наночастиц методом динамического светорассеяния // Коллоид. журн. 2009. Т. 71. № 6. С. 728–733.
Левин А.Д., Садагов А.Ю. Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах и устройство для его осуществления // Патент № 2610942 C Российская Федерация, МПК G01N 21/00. № 2015151702, заявл. 02.12.2015, опубл. 17.02.2017.
Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986.
Li F., Schafer R., Hwang C.-T., Tanner C.E., Ruggiero S.T. High-precision sizing of nanoparticles by laser transmission spectroscopy // Appl. Opt. 2010. V. 49. № 34. P. 6602. https://doi.org/10.1364/AO.49.006602
Li F., Mahon A.R., Barnes M.A. et al. Quantitative and rapid DNA detection by laser transmission spectroscopy // PLoS One. 2011. V. 6. № 12. P. e29224. https://doi.org/10.1371/journal.pone.0029224
Sennato S., Sarra A., La Capria C.P. et al. Quantification of particle number concentration in liposomal suspensions by Laser Transmission Spectroscopy (LTS) // Colloid. Surf. B. 2023. V. 222. P. 113137. https://doi.org/10.1016/j.colsurfb.2023.113137
Sun N., Johnson J., Stack M.S. et al. Nanoparticle analysis of cancer cells by light transmission spectroscopy // Anal. Biochem. 2015. V. 484. P. 58–65. https://doi.org/10.1016/j.ab.2015.05.004
Sarra A., Stanchieri G.D.P., De Marcellis A. et al. Laser Transmission Spectroscopy based on tunable-gain dual-channel dual-phase LIA for biological nanoparticles characterization // IEEE Trans. Biomed. Circuits Syst. 2021. V. 15. № 1. P. 177–187. https://doi.org/10.1109/TBCAS.2021.3060569
Filipe V., Hawe A., Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates // Pharm. Res. 2010. V. 27. № 5. P. 796–810. https://doi.org/10.1007/s11095-010-0073-2
Griffiths D., Carnell-Morris P., Wright M. Nanoparticle tracking analysis for multiparameter characterization and counting of nanoparticle suspensions // Methods Mol. Biol. 2020. P. 289–303. https://doi.org/10.1007/978-1-0716-0319-2_22
Gallego-Urrea J.A., Tuoriniemi J., Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples // TrAC Trends Anal. Chem. 2011. V. 30. № 3. P. 473–483. https://doi.org/10.1016/j.trac.2011.01.005
Tian X., Nejadnik M.R., Baunsgaard D. et al. Comprehensive evaluation of nanoparticle tracking analysis (NanoSight) for characterization of proteinaceous submicron particles // J. Pharm. Sci. 2016. V. 105. № 11. P. 3366–3375. https://doi.org/10.1016/j.xphs.2016.08.009
Sediq A.S., van Duijvenvoorde R.B., Jiskoot W., Nejadnik M.R. No Touching! Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring // J. Pharm. Sci. 2016. V. 105. № 2. P. 519–529. https://doi.org/10.1016/j.xphs.2015.10.003
Bickel F., Herold E.M., Signes A. et al. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation // Eur. J. Pharm. Biopharm. 2016. V. 107. P. 310–320. https://doi.org/10.1016/j.ejpb.2016.07.020
Chen C., Zhu S., Huang T., Wang S., Yan X. Analytical techniques for single-liposome characterization // Anal. Methods. 2013. V. 5. № 9. P. 2150.https://doi.org/10.1039/c3ay40219c
Barcelos J.M., Hayasaki T.G., de Santana R.C. et al. Photothermal properties of IR-780-based nanoparticles depend on nanocarrier design: A comparative study on synthetic liposomes and cell membrane and hybrid biomimetic vesicles // Pharmaceutics. 2023. V. 15. № 2. P. 444. https://doi.org/10.3390/pharmaceutics15020444
Gross J., Sayle S., Karow A.R., Bakowsky U., Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters // Eur. J. Pharm. Biopharm. 2016. V. 104. P. 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013
Anderson W., Kozak D., Coleman V.A., Jämting Å.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions // J. Colloid Interface Sci. 2013. V. 405. P. 322–330. https://doi.org/10.1016/j.jcis.2013.02.030
Malloy A., Carr B. NanoParticle tracking analysis – The HaloTM System // Part. Part. Syst. Charact. 2006. V. 23. № 2. P. 197–204. https://doi.org/10.1002/ppsc.200601031
Takechi-Haraya Y., Usui A., Izutsu K., Abe Y. Atomic force microscopic imaging of mRNA-lipid nanoparticles in aqueous medium // J. Pharm. Sci. 2023. V. 112. № 3. P. 648–652. https://doi.org/10.1016/j.xphs.2022.11.026
Usfoor Z., Kaufmann K., Rakib A.S.H., Hergenröder R., Shpacovitch V. Features of sizing and enumeration of silica and polystyrene nanoparticles by nanoparticle tracking analysis (NTA) // Sensors. 2020. V. 20. № 22. P. 6611. https://doi.org/10.3390/s20226611
Bachurski D., Schuldner M., Nguyen P.-H. et al. Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView // J. Extracell. Vesicles. 2019. V. 8. № 1. P. 1596016. https://doi.org/10.1080/20013078.2019.1596016
Hoover B.M., Murphy R.M. Evaluation of nanoparticle tracking analysis for the detection of rod-shaped particles and protein aggregates // J. Pharm. Sci. 2020. V. 109. № 1. P. 452–463. https://doi.org/10.1016/j.xphs.2019.10.006
Reipa V., Purdum G., Choi J. Measurement of nanoparticle concentration using quartz crystal microgravimetry // J. Phys. Chem. B. 2010. V. 114. № 49. P. 16112–16117. https://doi.org/10.1021/jp103861m
Wen C.-Y., Tang M., Hu J. et al. Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces // Anal. Chem. 2016. V. 88. № 20. P. 10134–10142. https://doi.org/10.1021/acs.analchem.6b02613
Maas S.L.N., De Vrij J., Broekman M.L.D. Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing // J. Vis. Exp. 2014. № 92. P. e51623. https://doi.org/10.3791/51623
Shard A.G., Sparnacci K., Sikora A. et al. Measuring the relative concentration of particle populations using differential centrifugal sedimentation // Anal. Methods. 2018. V. 10. № 22. P. 2647–2657. https://doi.org/10.1039/C8AY00491A
Vaclavek T., Prikryl J., Foret F. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review // J. Sep. Sci. 2019. V. 42. № 1. P. 445–457.https://doi.org/10.1002/jssc.201800978
Austin J., Minelli C., Hamilton D., Wywijas M., Jones H.J. Nanoparticle number concentration measurements by multi-angle dynamic light scattering // J. Nanoparticle Res. 2020. V. 22. № 5. P. 108. https://doi.org/10.1007/s11051-020-04840-8
Marques S.S., Ramos I.I., Silva C. et al. Lab-on-Valve automated and miniaturized assessment of nanoparticle concentration based on light-scattering // Anal. Chem. 2023. V. 95. № 10. P. 4619–4626. https://doi.org/10.1021/acs.analchem.2c04631
Pauw B.R., Kästner C., Thünemann A.F. Nanoparticle size distribution quantification: Results of a small-angle X-ray scattering inter-laboratory comparison // J. Appl. Crystallogr. 2017. V. 50. № 5. P. 1280–1288. https://doi.org/10.1107/S160057671701010X
Hlaváček A., Křivánková J., Brožková H. et al. Absolute counting method with multiplexing capability for estimating the number concentration of nanoparticles using anisotropically collapsed gels // Anal. Chem. 2022. V. 94. № 41. P. 14340–14348. https://doi.org/10.1021/acs.analchem.2c02989
Li M., Guha S., Zangmeister R., Tarlov M.J., Zachariah M.R. Method for determining the absolute number concentration of nanoparticles from electrospray sources // Langmuir. 2011. V. 27. № 24. P. 14732–14739. https://doi.org/10.1021/la202177s
Urey C., Weiss V.U., Gondikas A. et al. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles // Int. J. Pharm. 2016. V. 513. № 1–2. P. 309–318. https://doi.org/10.1016/j.ijpharm.2016.09.049
Tuoriniemi J., Moreira B., Safina G. Determining number concentrations and diameters of polystyrene particles by measuring the effective refractive index of colloids using surface plasmon resonance // Langmuir. 2016. V. 32. № 41. P. 10632–10640. https://doi.org/10.1021/acs.langmuir.6b02684
Cuello-Nuñez S., Abad-Álvaro I., Bartczak D. et al. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach // J. Anal. At. Spectrom. 2020. V. 35. № 9. P. 1832–1839. https://doi.org/10.1039/c9ja00415g
Weiss V.U., Wieland K., Schwaighofer A., Lendl B., Allmaier G. Native nano-electrospray differential mobility analyzer (nES GEMMA) enables size selection of liposomal nanocarriers combined with subsequent direct spectroscopic analysis // Anal. Chem. 2019. V. 91. № 6. P. 3860–3868. https://doi.org/10.1021/acs.analchem.8b04252
Левин А.Д., Нагаев А.И., Рукин Е.М. и др. Проблемы методического обеспечения биомедицинских нанотехнологий // Измерительная техника. 2010. № 8. С. 29–34.
Du S., Kendall K., Morris S., Sweet C. Measuring number-concentrations of nanoparticles and viruses in liquids on-line // J. Chem. Technol. Biotechnol. 2010. V. 85. № 9. P. 1223–1228. https://doi.org/10.1002/jctb.2421
Yahata S., Hirose M., Ueno T., Nagumo H., Sakai-Kato K. Effect of sample concentration on nanoparticle tracking analysis of small extracellular vesicles and liposomes mimicking the physicochemical properties of exosomes // Chem. Pharm. Bull. 2021. V. 69. № 11. P. 1045–1053. https://doi.org/10.1248/cpb.c21-00452
De Jong W.H., Hagens W.I., Krystek P. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration // Biomaterials. 2008. V. 29. № 12. P. 1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037
Reshetov V., Zorin V., Siupa A. et al. Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (Temoporfin) with serum proteins: Protein binding and liposome destruction // Photochem. Photobiol. 2012. V. 88. № 5. P. 1256–1264. https://doi.org/10.1111/j.1751-1097.2012.01176.x
Wilson D.R., Green J.J. Nanoparticle tracking analysis for determination of hydrodynamic diameter, concentration, and zeta-potential of polyplex nanoparticles // Methods Mol. Biol. 2017. P. 31–46. https://doi.org/10.1007/978-1-4939-6840-4_3
Wilson D.R., Mosenia A., Suprenant M.P. et al. Continuous microfluidic assembly of biodegradable poly(be-ta-amino ester)/DNA nanoparticles for enhanced gene delivery // J. Biomed. Mater. Res. Part A. 2017. V. 105. № 6. P. 1813–1825. https://doi.org/10.1002/jbm.a.36033
Uzhytchak M., Smolková B., Lunova M. et al. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function // Adv. Drug Deliv. Rev. 2023. V. 197. P. 114828. https://doi.org/10.1016/j.addr.2023.114828
Kato H. Tracking nanoparticles inside cells // Nat. Nanotechnol. 2011. V. 6. № 3. P. 139–140. https://doi.org/10.1038/nnano.2011.25
Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics // Nat. Nanotechnol. 2021. V. 16. № 3. P. 266–276. https://doi.org/10.1038/s41565-021-00858-8
Åberg C. Kinetics of nanoparticle uptake into and distribution in human cells // Nanoscale Adv. 2021. V. 3. № 8. P. 2196–2212. https://doi.org/10.1039/D0NA00716A
Salvati A., Poelstra K. Drug targeting and nanomedicine: Lessons learned from liver targeting and opportunities for drug innovation // Pharmaceutics. 2022. V. 14. № 1. P. 217. https://doi.org/10.3390/pharmaceutics14010217
Vtyurina N., Åberg C., Salvati A. Imaging of nanoparticle uptake and kinetics of intracellular trafficking in individual cells // Nanoscale. 2021. V. 13. № 23. P. 10436–10446. https://doi.org/10.1039/D1NR00901J
Åberg C., Piattelli V., Montizaan D., Salvati A. Sources of variability in nanoparticle uptake by cells // Nanoscale. 2021. V. 13. № 41. P. 17530–17546. https://doi.org/10.1039/D1NR04690J
Aizik G., Waiskopf N., Agbaria M. et al. Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue // ACS Nano. 2017. V. 11. № 3. P. 3038–3051. https://doi.org/10.1021/acsnano.7b00016
Labouta H.I., Sarsons C., Kennard J. et al. Understanding and improving assays for cytotoxicity of nanoparticles: What really matters? // RSC Adv. 2018. V. 8. № 41. P. 23027–23039. https://doi.org/10.1039/C8RA03849J
Fan Y., Marioli M., Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery // J. Pharm. Biomed. Anal. 2021. V. 192. P. 113642. https://doi.org/10.1016/j.jpba.2020.113642
Ma B., Bianco A. Regulation of biological processes by intrinsically chiral engineered materials // Nat. Rev. Mater. 2023. V. 8. № 6. P. 403–413. https://doi.org/10.1038/s41578-023-00561-1
Salvati A., Åberg C., dos Santos T. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics // Nanomedicine Nanotechnology, Biol. Med. 2011. V. 7. № 6. P. 818–826. https://doi.org/10.1016/j.nano.2011.03.005
Shi H., He X., Yuan Y., Wang K., Liu D. Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking // Anal. Chem. 2010. V. 82. № 6. P. 2213–2220. https://doi.org/10.1021/ac902417s
Chen Y.-C., Chen K.-F., Lin K.-Y.A. et al. Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system // Sci. Total Environ. 2023. V. 895. P. 165213. https://doi.org/S0048969723038366
Yang K., Tran K., Salvati A. Tuning liposome stability in biological environments and intracellular drug release kinetics // Biomolecules. 2022. V. 13. № 1. P. 59. https://doi.org/10.3390/biom13010059
Faria M., Noi K.F., Dai Q. et al. Revisiting cell–particle association in vitro: A quantitative method to compare particle performance // J. Control. Release. 2019. V. 307. P. 355–367. https://doi.org/10.1016/j.jconrel.2019.06.027
Simonsen J.B., Kromann E.B. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies – A commentary // J. Control. Release. 2021. V. 335. P. 660–667. https://doi.org/10.1016/j.jconrel.2021.05.041
Gottstein C., Wu G., Wong B.J., Zasadzinski J.A. Precise quantification of nanoparticle internalization // ACS Nano. 2013. V. 7. № 6. P. 4933–4945. https://doi.org/10.1021/nn400243d
Vischio F., Fanizza E., De Bellis V. et al. Near-infrared absorbing solid lipid nanoparticles encapsulating plasmonic copper sulfide nanocrystals // J. Phys. Chem. C. 2019. V. 123. № 37. P. 23205–23213.https://doi.org/10.1021/acs.jpcc.9b05897
Салаватов Н.А., Большакова А.В., Морозов В.Н. и др. Золотые наностержни с функционализированной органокремнеземной оболочкой: синтез и перспективы применения в тераностике опухолей // Коллоидный журнал. 2022. Т. 84. № 1. С. 97–104. https://doi.org/10.31857/S0023291222010104
Chauhan K., Zárate-Romero A., Sengar P., Medrano C., Vazquez-Duhalt R. Catalytic kinetics considerations and molecular tools for the design of multienzymatic cascade nanoreactors // ChemCatChem. 2021. V. 13. № 17. P. 3732–3748. https://doi.org/10.1002/cctc.202100604
Дополнительные материалы отсутствуют.
Инструменты
Коллоидный журнал