Коллоидный журнал, 2023, T. 85, № 5, стр. 705-714
Липидные наночастицы для инкапсулирования и доставки лютеина
А. Д. Широких 1, *, Ю. А. Гурулева 1, Е. А. Маринец 1, М. Ю. Королева 1, **
1 Российский химико-технологический университет им. Д.И. Менделеева
125047 Москва,
Миусская площадь, д. 9, Россия
* E-mail: adshirokikh@gmail.com
** E-mail: m.yu.kor@gmail.com
Поступила в редакцию 27.06.2023
После доработки 29.07.2023
Принята к публикации 31.07.2023
- EDN: DIKBRW
- DOI: 10.31857/S0023291223600530
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
В последнее время липидные наночастицы интенсивно исследуют в качестве носителей липофильных лекарственных соединений. В данной работе проведено изучение устойчивости наноэмульсий с углеводородным маслом, твердых липидных наночастиц со стеариновой кислотой и наноструктурированных липидных частиц, содержащих углеводородное масло и стеариновую кислоту в массовом соотношении 1 : 1. Результаты показали, что при стабилизации неионогенными поверхностно-активными веществами Tween 60 и Span 60 все исследованные липидные системы сохраняли устойчивость к агрегации и последующей седиментации более 30 сут. Включение в состав липидных дисперсий лютеина практически не оказывало влияния на их устойчивость, при этом размер твердых липидных наночастиц и наноструктурированных липидных частиц уменьшался от 28–30 до 15–17 нм. Биодоступность лютеина при его инкапсулировании в липидные наночастицы определялась по их влиянию на восстановление скорости кровотока при моделировании гемической гипоксии. Практически сразу же после нанесения липидных наночастиц снижение скорости кровотока прекращалось и через 5–10 мин наблюдалась тенденция к его восстановлению. Это показывает перспективность использования липидных наночастиц с углеводородным маслом и стеариновой кислотой для доставки липофильных лекарственных соединений.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Tadros T., Izquierdo P., Esquena J. Solans C. Formation and stability of nano-emulsions // Adv. Colloid Interface Sci. 2004. V. 108. P. 303–318. https://doi.org/10.1016/j.cis.2003.10.023
McClements D.J., Decker E.A., Weiss J. Emulsion-based delivery systems for lipophilic bioactive components // J. Food Sci. 2007. V. 72. № 8. P. 109–124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
Khosa A., Reddi S., Saha R.N. Nanostructured lipid carriers for site-specific drug delivery // Biomed. & Pharmacother. 2018. V. 103. P. 598–613. https://doi.org/10.1016/j.biopha.2018.04.055
Tang C.H., Chen H.L., Dong J.R. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives // Appl. Sci. 2023. V. 13. № 3. P. 1726. https://doi.org/10.3390/app13031726
Zhong Q., Zhang L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications // Adv. Colloid Interface Sci. 2019. V. 273. 102033. https://doi.org/10.1016/j.cis.2019.102033
Gordillo-Galeano A., Mora-Huertas C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release // Eur. J. Pharm. Biopharm. 2018. V. 133. P. 285–308. https://doi.org/10.1016/j.ejpb.2018.10.017
McClements D.J., Jafari S.M. General aspects of nanoemulsions and their formulation // Nanoemulsions: Academic press. 2018. P. 3–20. https://doi.org/10.1016/B978-0-12-811838-2.00001-1
Koroleva M.Y., Yurtov E.V. Nanoemulsions: The properties, methods of preparation and promising applications // Russ. Chem. Rev. 2012. V. 81. № 1. P. 21–43. https://doi.org/10.1070/RC2012v081n01ABEH004219
Koroleva M., Portnaya I., Mischenko E., Abutbul-Ionita I., Kolik-Shmuel L., Danino D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability // J. Colloid Interface Sci. 2022. V. 610. P. 61–69. https://doi.org/10.1016/j.jcis.2021.12.010
Higuchi W.I., Misra J. Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof // J. Pharm. Sci. 1962. V. 51. № 5. P. 459–466. https://doi.org/10.1002/jps.2600510514
Koroleva M.Y., Yurtov E.V. Ostwald ripening in macro-and nanoemulsions // Russ. Chem. Rev. 2021. V. 90. № 3. P. 293–323. https://doi.org/10.1070/RCR4962
Ribeiro M.D.M.M., Arellano D.B., Grosso C.R.F. The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process // Food Res. Int. 2012. V. 47. № 1. P. 38–44. https://doi.org/10.1016/j.foodres.2012.01.007
Jeitler R., Glader C., Tetyczka C., Zeiringer S., Absenger-Novak M., Selmani A., Fröhlich E., Roblegg E. Investigation of cellular interactions of lipid-structured nanoparticles with oral mucosal epithelial cells // Frontiers in Mol. Biosci. 2022. V. 9. P. 917921. https://doi.org/10.3389/fmolb.2022.917921
Dantas I.L., Bastos K.T.S., Machado M., Galvao J.G., Lima A.D., Gonsalves J.K.M.C., Almeida E.D.P., Araújo A.A.S., de Meneses C.T., Sarmento V.H.V., Nunes R.S., Lira A.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus // J. Therm. Anal. Calorim. 2018. V. 132. P. 1557–1566. https://doi.org/10.1007/s10973-018-7072-7
Pinto F., de Barros D.P., Reis C., Fonseca L.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design // J. Mol. Liq. 2019. V. 293. P. 111468. https://doi.org/10.1016/j.molliq.2019.111468
de Souza I.D., Saez V., de Campos V.E., Mansur C.R. Size and vitamin E release of nanostructured lipid carriers with different liquid lipids, surfactants and preparation methods // Macromolecular Symposia. 2019. V. 383. № 1. P. 1800011. https://doi.org/10.1002/masy.201800011
Almeida E.D.P., Silva L.A.S., de Araujo G.R.S., Montalvão M.M., Matos S.S., da Cunha Gonsalves J.K.M., de Souza Nunes R., de Meneses C.T., Araujo R.G.O., Sarmento V.H.V., de Lucca Junior W., Correa C.B., Rodrigues Júnior J.J., Lira A.A.M. Chitosan-functionalized nanostructured lipid carriers containing chloroaluminum phthalocyanine for photodynamic therapy of skin cancer // Eur. J. Pharm. Biopharm. 2022. V. 179. P. 221–231. https://doi.org/10.1016/j.ejpb.2022.09.009
Sánchez-López E., Espina M., Doktorovova S., Souto E.B., García M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye–Part II-Ocular drug-loaded lipid nanoparticles // Eur. J. Pharm. Biopharm. 2017. V. 110. P. 58–69. https://doi.org/10.1016/j.ejpb.2016.10.013
Matarazzo A.P., Elisei L.M.S., Carvalho F.C., Bonfílio R., Ruela A.L.M., Galdino G., Pereira G.R. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain // Eur. J. Pharm. Sci. 2021. V. 159. P. 105698. https://doi.org/10.1016/j.ejps.2020.105698
Lüdtke F.L., Stahl M.A., Grimaldi R., Forte M.B.S., Gigante M.L., Ribeiro A.P.B. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers // Food Res. Int. 2022. V. 160. P. 111746. https://doi.org/10.1016/j.foodres.2022.111746
Kelidari H.R., Saeedi M., Akbari J., Morteza-Semnani K., Valizadeh H., Maniruzzaman M., Farmoudeh A., Nokhodchi A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability // AAPS Pharm. Sci. Tech. 2017. V. 18. P. 1469–1474. https://doi.org/10.1208/s12249-016-0621-0
Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Y., Ivanov V.K., Popova N.R. Bioavailability of nanoemulsions modified with curcumin and cerium dioxide nanoparticles // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 1. P. 89–97. https://doi.org/10.17586/2220-8054-2023-14-1-89-97
Gadad A.P., Tigadi S.G., Dandagi P.M., Mastiholimath V.S., Bolmal U.B. Rosuvastatin loaded nanostructured lipid carrier: For enhancement of oral bioavailability // Indian J. Pharm. Ed. Res. 2016. V. 50. № 4. P. 605–611. https://doi.org/10.5530/ijper.50.4.13
Moghddam S.M.M., Ahad A., Aqil M., Imam S.S., Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach // Artif. Cells, Nanomed., and Biotechnol. 2017. V. 45. № 3. P. 617–624. https://doi.org/10.3109/21691401.2016.1167699
Becerra M.O., Contreras L.M., Lo M.H., Díaz J.M., Herrera G.C. Lutein as a functional food ingredient: Stability and bioavailability // J. Funct. Foods. 2020. V. 66. 103771. https://doi.org/10.1016/j.jff.2019.103771
Ozawa Y., Sasaki M., Takahashi N., Kamoshita M., Miyake S., Tsubota K. Neuroprotective effects of lutein in the retina // Curr. Pharm. Des. 2012. V. 18. № 1. P. 51–56. https://doi.org/10.2174/138161212798919101
Ahn Y.J., Kim H. Lutein as a modulator of oxidative stress-mediated inflammatory diseases // Antioxidants. 2021. V. 10(9). P. 1448. https://doi.org/10.3390/antiox10091448
Wang Y., Geng M., Zhang X., Yan M., Sun L., Zhao Q. Preparation of lutein nanoemulsion by ultrasonic homogenization method: Stability and in vitro anti-inflammatory activity // Algal Res. 2023. V. 73. P. 103154. https://doi.org/10.1016/j.algal.2023.103154
Lim C., Kim D.W., Sim T., Hoang N.H., Lee J.W., Lee E.S., Youn Y.S., Oh K.T. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops // J. Drug Delivery Sci. Technol. 2016. V. 36. P. 168–174. https://doi.org/10.1016/j.jddst.2016.10.009
Doost A.S., Afghari N., Abbasi H., Nasrabadi M.N., Dewettinck K., Van der Meeren P. Nano-lipid carriers stabilized by hydrophobically modified starch or sucrose stearate for the delivery of lutein as a nutraceutical beverage model // Colloids Surf. A: Physicochem. Eng. Aspects. 2020. V. 605. P. 125349. https://doi.org/10.1016/j.colsurfa.2020.125349
Weigel F., Weiss J., Decker E.A., McClements D.J. Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability // Food Chem. 2018. V. 242. P. 395–403. https://doi.org/10.1016/j.foodchem.2017.09.060
Teo A., Lee S.J., Goh K.K., Wolber F.M. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method // Food Chem. 2017. V. 221. P. 1269–1276. https://doi.org/10.1016/j.foodchem.2016.11.030
Toragall V., Srirangam P., Jayapala N., Baskaran V. Lutein encapsulated oleic-linoleic acid nanoemulsion boosts oral bioavailability of the eye protective carotenoid lutein in rat model // Mater. Today Commun. 2021. V. 28. P. 102522. https://doi.org/10.1016/j.mtcomm.2021.102522
Lacatusu I., Mitrea E., Badea N., Stan R., Oprea O., Meghea A. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies // J. Funct. Foods. 2013. V. 5. № 3. P. 1260–1269. https://doi.org/10.1016/j.jff.2013.04.010
Tan F., Cui H., Bai C., Qin C., Xu L., Han J. Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles // J. Drug Delivery Sci. Technol. 2021. V. 62. P. 102362. https://doi.org/10.1016/j.jddst.2021.102362
Liu M., Wang F., Pu C., Tang W., Sun Q. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier // Food Chem. 2021. V. 358. P. 129840. https://doi.org/10.1016/j.foodchem.2021.129840
Mitri K., Shegokar R., Gohla S., Anselmi C., Müller R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance // Int. J. Pharm. 2011. V. 414. № 1–2. P. 267–275. https://doi.org/10.1016/j.ijpharm.2011.05.008
Koroleva M., Nagovitsina T., Yurtov E. Properties of nanocapsules obtained from oil-in-water nanoemulsions // Mendeleev Commun. 2015. V. 25. P. 389–390. https://doi.org/10.1016/j.mencom.2015.09.026
Koroleva M., Portnaya I., Mischenko E., Abutbul-Ionita I., Kolik-Shmuel L., Danino D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability // J. Colloid Interface Sci. 2022. V. 610. P. 61–69. https://doi.org/10.1016/j.jcis.2021.12.010
Izquierdo P., Feng J., Esquena J., Tadros T.F., Dederen J.C., Garcia M.J., Azemar N., Solans C. The influence of surfactant mixing ratio on nano-emulsion formation by the PIT method // J. Colloid Interface Sci. 2005. V. 285. № 1. P. 388–394. https://doi.org/10.1016/j.jcis.2004.10.047
Tikhonov V.P., Shevchenko T.V., Rodina I.A., Beljankina E.J., Pligina K.L., Makarova M.N., Girina M.B. Method of evaluating irritating action and activity of natural, synthetic substances and ready preparations on chick embryos by method of ultrasonic dopplerography // RF patent: RU 2383888 C1. 2010.
Mishchenko E.V., Timofeeva E.E., Artamonov A.S., Portnaya I.B., Koroleva M.Y. Nanoemulsions and nanocapsules with oleic acid // Colloid J. 2022. V. 84. № 1. P. 64–70. https://doi.org/10.1134/S1061933X22010082
Дополнительные материалы отсутствуют.
Инструменты
Коллоидный журнал