Коллоидный журнал, 2023, T. 85, № 5, стр. 682-704
Биосовместимые гидрогели на основе биоразлагаемых полиэфиров и их сополимеров
Ю. С. Фомина 1, А. С. Семкина 1, 2, Ю. Д. Загоскин 1, *, М. М. Алексанян 3, С. Н. Чвалун 1, 2, Т. Е. Григорьев 1
1 Федеральное государственное бюджетное учреждение “Национальный исследовательский центр “Курчатовский институт”
123182 Москва, пл. Академика Курчатова, 1, Россия
2 Федеральное государственное бюджетное учреждение науки Институт синтетических полимерных материалов имени Н.С. Ениколопова Российской академии наук
117393 Москва, Профсоюзная ул., 70/2, Россия
3 Федеральное государственное бюджетное научное учреждение “Российский научный центр хирургии имени академика Б.В. Петровского”, ГСП-1
119991 Москва, Абрикосовский пер., 2, Россия
* E-mail: zagos@inbox.ru
Поступила в редакцию 26.06.2023
После доработки 03.08.2023
Принята к публикации 03.08.2023
- EDN: ZAFXKE
- DOI: 10.31857/S0023291223600554
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Аннотация
Гидрогели на основе полиэтиленгликоля достаточно давно зарекомендовали себя в качестве перспективных материалов для различных биомедицинских технологий. В обзоре рассмотрены системы на основе наиболее распространeнных и изученных сополимеров полиэтиленгликоля и биоразлагаемых полиэфиров лактида и гликолида. Показаны традиционные и современные подходы синтеза сополимеров и получения гидрогелей на их основе, отражены исследования структуры и свойств материалов, а также основные направления применения данных изделий на практике.
Полные тексты статей выпуска доступны в ознакомительном режиме только авторизованным пользователям.
Список литературы
Максимова Ю.Г., Щетко В.А, Максимов А.Ю. Полимерные гидрогели в сельском хозяйстве (обзор) // Сельскохозяйственная биология. 2023. Т. 58. № 1. С. 23–42. https://doi.org/10.15389/agrobiology.2023.1.23rus
Kaur P., Agrawal R., Pfeffer F.M. et al. Hydrogels in agriculture: Prospects and challenges // Journal of Polymers and the Environment. 2023. V. 35. P. 3701–3718. https://doi.org/10.1007/s10924-023-02859-1
Асулян Л.Д., Бояркина В.В, Агаева М.В. Гидрогели поливинилового спирта как влагоудерживающие сорбенты // Известия ТулГУ. Естественные науки. 2021. № 1. С. 13–19. https://doi.org/10.24412/2071-6176-2021-1-13-19
Рабаданов Р.Г., Рабаданов Г.Г., Мукаилов М.Д., Атаев М.З. Сильнонабухающие полимерные гидрогели на плодоносящих виноградниках Южного Дагестана // Проблемы развития АПК региона. 2017. Т. 29. № 1(29). С. 46–52.
Tran N-P-D., Yang M-C., Tran-Nguyen P.L. Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers // Colloids and Surfaces B: Biointerfaces. 2021. V. 206. P. 111957. https://doi.org/10.1016/j.colsurfb.2021.111957
Бондаренко П.И., Пинчук Л.С., Дравица Л.В., Бондаренко Н.Ю. Лечебные контактные линзы и способы их изготовления (обзор) // Офтальмология. Восточная Европа. 2011. № 3(10). С. 78–91.
Мельник С.И., Торикашвили В.Д., Якута К.Д., Лебедева С.А. Раневые повязки и мягкие лекарственные формы на основе коллагена для лечения ран различной этиологии // Фармацевтическое дело и технология лекарств. 2020. № 6. С. 10–16. https://doi.org/10.33920/med-13-2006-01
Кузнецова Т.А., Беседнова Н.Н., Усов В.В., Андрюков Б.Г. Биосовместимые и биодеградируемые раневые покрытия на основе полисахаридов из морских водорослей (обзор литературы) // Вестник хирургии им. И.И. Грекова. 2020. Т. 179. № 4. С. 109–115. https://doi.org/10.24884/0042-4625-2020-179-4-109-115
Дуданов И.П., Виноградов В.В., Криштоп В.В., Никонорова В.Г. Преимущества и недостатки гелевых покрытий в терапии ожоговых ран и ожогов (обзор литературы) // Вестник новых медицинских технологий. Электронное издание. 2022. Т. 16. № 2. С. 13–22. https://doi.org/10.24412/2075-4094-2022-2-1-2
Ушмаров Д.И., Гуменюк А.С., Гуменюк С.Е. и др. Сравнительная оценка многофункциональных раневых покрытий на основе хитозана: многоэтапное рандомизированное контролируемое экспериментальное исследование // Кубанский научный медицинский вестник. 2021. Т. 28. № 3. С. 78–96. https://doi.org/10.25207/1608-6228-2021-28-3-78-96
Glukhova S.A., Molchanov V.S., Kharitonova E.P. et al. Green nanocomposite gels based on binary network of sodium alginate and percolating halloysite clay nanotubes for 3D printing // Carbohydrate Polymers. 2022. V. 282. P. 119106. https://doi.org/10.1016/j.carbpol.2022.119106
Григорьев А.М., Басок Ю.Б., Кириллова А.Д. и др. Криогенно-структурированный гидрогель на основе желатина как резорбируемая макропористая матрица для биомедицинских технологий // Вестник трансплантологии и искусственных органов. 2022. Т. 24. № 2. С. 83–93. https://doi.org/10.15825/1995-1191-2022-2-83-93
Osidak E.O., Andreev A.Yu., Avetisov S.E. et al. Corneal stroma regeneration with collagen-based hydrogel as an artificial stroma equivalent: A comprehensive in vivo study // Polymers. 2022. V. 14. № 19. P. 4017. https://doi.org/10.3390/polym14194017
Васильев А.В., Кузнецова В.С., Галицына Е.В. и др. Биосовместимость и остеогенные свойства коллаген-фибронектинового гидрогеля, импрегнированного BMP-2 // Стоматология. 2019. Т. 98. № 6(2). С. 5–11. https://doi.org/10.17116/stomat2019980625
Шилова С.В., Миргалеев Г.М., Волкова М.В. и др. Биосовместимые системы доставки антибиотика цефотаксима на основе гелевых микрочастиц альгината кальция // Вестник Технологического университета. 2021. Т. 24. № 12. С. 56–59.
Yermak I.M., Gorbach V.I., Karnakov I.A., Davydova V.N. et al. Carrageenan gel beads for echinochrome inclusion: Influence of structural features of carrageenan // Carbohydrate Polymers. 2021. V. 272. P. 118479. https://doi.org/10.1016/j.carbpol.2021.118479
Vasilyev A.V., Kuznetsova V.S., Bukharova T.B. et al. Influence of the degree of deacetylation of chitosan and BMP-2 concentration on biocompatibility and osteogenic properties of BMP-2/PLA granule-loaded chitosan/β-glycerophosphate hydrogels // Molecules. 2021. V. 26. № 2. P. 261. https://doi.org/10.3390/molecules26020261
Wang Z., Ye Q., Yu S., Akhavan B. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: A comprehensive review // Advanced Healthcare Materials. 2023. V. 12. № 18. P. 2300105. https://doi.org/10.1002/adhm.202300105
Бакеева И.В., Докторова А.В., Дамшкалн Л.Г., Лозинский В.И. Криоструктурирование полимерных систем. 54. Гибридные органо-неорганические криогели поливинилового спирта, наполненные образующимся in situ // Коллоидный журнал. 2021. Т. 83. № 1. С. 35–50. https://doi.org/10.31857/S002329122101002X
Jeong B., Wang L.Q., Gutowska A. Biodegradable thermoreversible gelling PLGA-g-PEG copolymers† // Chemical Communications. 2001. № 16. P. 1516–1517. https://doi.org/10.1039/B102819G
Cui S., Yu L., Ding J. Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type // Macromolecules. 2019. V. 52. P. 3697−3715. https://doi.org/10.1021/acs.macromol.9b00534
Yu L., Ding J. Injectable hydrogels as unique biomedical materials // Chemical Society Reviews. 2008. V. 37. P. 1473–1481. https://doi.org/10.1039/B713009K
Kricheldorf H.R., Meier-Haack J. Polylactones, 22† ABA triblock copolymers of L-lactide and poly(ethylene glycol) // Macromolecular Chemistry. 1993. V. 194. № 2. P. 715–725. https://doi.org/10.1002/macp.1993.021940229
Deng X.M., Xu R.P., Xiong C.D., Cheng L.M. Synthesis and characterization of block copolymers from D,L-lactide and poly(ethylene glycol) with stannous chloride // Journal of Polymer Science Part C: Polymer Letters. 1990. V. 28. № 13. P. 411–416. https://doi.org/10.1002/pol.1990.140281303
Kissel. T., Li Y.X., Volland C. Properties of block- and random-copolymers of lactic acid and glycolic acid // Proc. Int. Symp. Controlled Release Bioact. Mater. 1993. P. 127–128.
Youxin L., Kissel T. Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly (L-lactic acid) or poly (L-lactic-co-glycolic acid) A-blocks attached to central poly (oxyethylene) B-blocks // Journal of Controlled Release. 1993. V. 27. № 3. P. 247–257. https://doi.org/10.1016/0168-3659(93)90155-X
Stevels W.M., Ankone M.L.K., Dijkstra P.J., Feijen J. Kinetics and mechanism of L-lactide polymerization using two different yttrium alkoxides as initiators // Macromolecules. 1996. V. 29. № 19. P. 6132–6138. https://doi.org/10.1021/ma9605311
Stevels W.M., Ankone M.L.K., Dijkstra P.J., Feijen J. A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols // Macromolecules. 1996. V. 29. № 9. P. 3332–3333. https://doi.org/10.1021/ma951813o
Li S., Anjard S., Rashkov I., Vert M. Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH2 // Polymer. 1998. V. 39. № 22. P. 5421–5430. https://doi.org/10.1016/S0032-3861(97)10272-5
Cerrai P., Tricoli M. Block copolymers from L-lactide and polyethylene glycol through a non-catalyzed route // Macromolecular Chemistry Rapid Communications. 1993. V. 9. № 9. P. 529–538. https://doi.org/10.1002/marc.1993.030140901
Sanabria-DeLong N., Agrawal S.K., Bhatia S.R., Tew G.N. Impact of synthetic technique on PLA-PEO-PLA physical hydrogel properties // Macromolecules. 2007. V. 40. № 22. P. 7864–7873. https://doi.org/10.1021/ma071243f
Hamia M., Aminib M. et al. Synthesis and in vitro evaluation of a pH-sensitive PLA–PEG–folate based polymeric micelle for controlled delivery of docetaxel // Colloids and Surfaces B: Biointerfaces. 2014. V. 116. P. 309–317. https://doi.org/10.1016/j.colsurfb.2014.01.015
Subbu S. Venkatraman., Pan Jie et al. Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier // Pharmaceutical Nanotechnology. 2005. V. 298. № 1. P. 219–232. https://doi.org/10.1016/j.ijpharm.2005.03.023
Li L., Cao Z.-Q. et al. Poly(L-lactic acid)-polyethylene glycol-poly(L-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(L-lactic acid) // Europian Polymer Journal. 2017. V. 97. P. 272–281. https://doi.org/10.1016/j.eurpolymj.2017.10.025
Qin W., Chuandong W. et al. Synthesis, thermosensitive gelation and degradation study of a biodegradable triblock copolymer // Journal of Macromolecular Science. 2013. V. 50. № 2. P. 200–207. https://doi.org/10.1080/10601325.2013.742794
Darge H.F., Andrgie A.T. et al. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy // International Journal of Pharmaceutics. 2019. V. 575. P. 118799. https://doi.org/10.1016/j.ijpharm.2019.118799
Yang H., Lei K. et al. Injectable PEG/polyester thermogel: A new liquid embolization agent for temporary vascular interventional therapy // Materials Science & Engineering C. 2019. V. 102. P. 606–615. https://doi.org/10.1016/j.msec.2019.04.075
Darge H.F., Andrgie A.T. et al. Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy // Chemical Engineering Journal. 2021. V. 406. P. 126879. https://doi.org/10.1016/j.cej.2020.126879
Liu. Y., Ma W. et al. In situ administration of temperature-sensitive hydrogel composite loading paclitaxel microspheres and cisplatin for the treatment of melanoma // Biomedicine & Pharmacotherapy. 2023. V. 160. P. 114380. https://doi.org/10.1016/j.biopha.2023.114380
Tanzi M.C., Verderio P. et al. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use // Journal of Materials Science: Materials in Medicine. 1994. V. 5. P. 393–396. https://doi.org/10.1007/BF00058971
Chen G.X., Kim H.S. et al. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state // European Polymer Journal. 2006. V. 42. № 2. P. 468–472. https://doi.org/10.1016/j.eurpolymj.2005.07.022
Fenton O. S., Tibbitt M.W. et al. Injectable polymer−nanoparticle hydrogels for local immune cell recruitment // Biomacromolecules. 2019. V. 20. № 12. P. 4430–4436. https://doi.org/10.1021/acs.biomac.9b01129
Yin X., Hewitt D.R.O. et al. Impact of stereochemistry on rheology and nanostructure of PLA–PEO–PLA triblocks: Stiff gels at intermediate L/D-lactide ratios // Soft Matter. 2018. V. 14. № 35. P. 7255–7263. https://doi.org/10.1039/C8SM01559G
Yin X., Hewitt D.R.O. et al. Effect of stereochemistry on nanoscale assembly of ABA triblock copolymers with crystallizable blocks // Polymer. 2021. V. 223. P. 123683. https://doi.org/10.1016/j.polymer.2021.123683
Mhiri S., Abid M. et al. Green synthesis of covalent hybrid hydrogels containing PEG/PLA‑based thermoreversible networks // Journal of Polymer Research. 2022. V. 29. № 8. P. 328. https://doi.org/10.1007/s10965-022-03153-9
Buwalda S.J., Dijkstra P.J. et al. In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)-poly(lactide) hydrogels // European Polymer Journal. 2017. V. 94. P. 152–161. https://doi.org/10.1016/j.eurpolymj.2017.07.002
Pertici V., Pinbarre C. et al. Degradable and injectable hydrogel for drug delivery in soft tissues // Biomacromolecules. 2018. V. 20. № 1. P. 149–163. https://doi.org/10.1021/acs.biomac.8b01242
Heskins M., Guillet J.E. Solution properties of poly(N-isopropylacrylamide) // Journal of Macromolecular Science: Part A. Chemistry. 1968. V. 2. № 8. P. 1441–1455. https://doi.org/10.1080/10601326808051910
Fujishige S., Kubota K., Ando I. Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) // Journal of Physical Chemistry. 1989. V. 93. № 8. P. 3311–3313. https://doi.org/10.1021/j100345a085
Trinh T.A., Le T.M.D. et al. A novel injectable pH–temperature sensitive hydrogel containing chitosan–insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment // Biomaterials. 2020. V. 8. № 14. P. 3830–3843. https://doi.org/10.1039/D0BM00634C
Grosjean M., Girard E. et al. Degradable bioadhesives based on star PEG−PLA hydrogels for soft tissue applications // Biomacromolecules. 2022. https://doi.org/10.1021/acs.biomac.2c01166
Yang F., Shi K., Hao Y. et al. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner // Bioactive Materials. 2021. V. 6. № 10. P. 3036–3048. https://doi.org/10.1016/j.bioactmat.2021.03.003
Yin X., Hewitt D.R. et al. Hierarchical assembly in PLA-PEO-PLA hydrogels with crystalline domains and effect of block stereochemistry // Colloids and Surfaces B: Biointerfaces. 2019. V. 180. P. 102–109. https://doi.org/10.1016/j.colsurfb.2019.04.031
Zhao J., Xiong J. et al. A triple crosslinked micelle-hydrogel lacrimal implant for localized and prolonged therapy of glaucoma // European Journal of Pharmaceutics and Biopharmaceutics. 2023. V. 185. P. 44–54. https://doi.org/10.1016/j.ejpb.2023.02.011
Agrawal S.K., Sanabria-DeLong N. et al. Structural characterization of PLA-PEO-PLA solutions and hydrogels: Crystalline vs amorphous PLA domains // Macromolecules. 2008. V. 41. № 5. P. 1774–1784. https://doi.org/10.1021/ma070634r
Mao H., Pan P. et al. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers // The Journal of Physical Chemistry. 2015. V. 119. № 21. P. 6471–6480. https://doi.org/10.1021/acs.jpcb.5b03610
Yang. F., Shi K. et al. A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy // Applied Materials Today. 2020. V. 19. P. 100608. https://doi.org/10.1016/j.apmt.2020.100608
Загоскин Ю.Д., Григорьев Т.Е. и др. Гидрогели и губчатые материалы на основе тройных блок-сополимеров лактида и этиленгликоля // Доклады академии наук. 2019. Т. 486. № 4. С. 433–436. https://doi.org/10.1134/S001250081906003X
Gholizadeh H., Landh E., Silva D.M. et al. In vitro and in vivo applications of a universal and synthetic thermo-responsive drug delivery hydrogel platform // International Journal of Pharmaceutics. 2023. V. 635. P. 122777. https://doi.org/10.1016/j.ijpharm.2023.122777
Chen S., Pieberb R. et al. Triblock copolymers: Synthesis, characterization, and delivery of a model protein // International Journal of Pharmaceutics. 2005. V. 288. № 2. P. 207–218. https://doi.org/10.1016/j.ijpharm.2004.09.026
Qiao M., Chen D. et al. Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels // International Journal of Pharmaceutics. 2005. V. 294. № 1–2. P. 103–112. https://doi.org/10.1016/j.ijpharm.2005.01.017
Yu L., Xu W. et al. Poly(lactic acid-co-glycolic acid)–poly(ethylene glycol)–poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection // Acta Biomaterialia. 2014. V. 10. № 3. P. 1251–1258. https://doi.org/10.1016/j.actbio.2013.12.007
Chen L., Ci T., Li T. et al. Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol−gel transition in water // Macromolecules. 2014. V. 47. № 17. P. 5895–5903. https://doi.org/10.1021/ma501110p
Chen L., Ci T., Yu L. et al. Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA−PEG−PLGA copolymer aqueous solutions // Macromolecules. 2015. V. 48. № 11. P. 3662–3671. https://doi.org/10.1021/acs.macromol.5b00168
Zhou Y., Cui Y., Wang L.Q. A Dual-sensitive hydrogel based on poly(lactide-co-glycolide)-polyethylene glycol-poly(lactide-co-glycolide) block copolymers for 3D printing // International Journal of Bioprinting. 2021. V. 7. № 3. P. 140–152. https://doi.org/10.18063/ijb.v7i3.389
Zentner G., Rathi R., Shih C. et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs // Journal of Controlled Release. 2001. V. 72. № 1–3. P. 203–215. https://doi.org/10.1016/S0168-3659(01)00276-0
Ghahremankhani A., Dorkoosh F., Dinarvand R. PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide delivery system: Effect of formulation properties on peptide release // Pharmaceutical Development and Technology. 2008. V. 13. № 1. P. 49–55. https://doi.org/10.1080/10837450701702842
Khodaverdi E. Tekie F. et al. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA // AAPS PharmSciTech. 2012. V. 13. P. 590–600. https://doi.org/10.1208/s12249-012-9781-8
Jeong B., Bae Y.H., Kim S.W. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions // Macromolecules. 1999. V. 32. № 21. P. 7064–7069. https://doi.org/10.1021/ma9908999
Jeong B., Lee K.M., Gutowska A., An Y.H. %Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering // Biomacromolecules. 2002. V. 3. № 4. P. 865–868. https://doi.org/10.1021/bm025536m
Chung Y.-M., Simmons K.L., Gutowska A., Jeong B. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions // Biomacromolecules. 2002. V. 3. № 3. P. 511–516. https://doi.org/10.1021/bm0156431
Lee S.J., Han B.R., Park S.Y. et al. Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution // Journal of Polymer Science: Part A: Polymer Chemistry. 2006. V. 44. № 2. P. 888–899. https://doi.org/10.1002/pola.21193
Shi J., Yu L., Ding J. PEG-based thermosensitive and biodegradable hydrogels // Acta Biomaterialia. 2021. V. 128. P. 42–59. https://doi.org/10.1016/j.actbio.2021.04.009
Cui S., Yu L., Ding J. Semi-bald micelles and corresponding percolated micelle networks of thermogels // Macromolecules. 2018. V. 51. № 16. P. 6405–6420. https://doi.org/10.1021/acs.macromol.8b01014
Lopez-Cano J.J., Sigen A., Andrés-Guerrero V. et al. Thermo-responsive PLGA-PEG-PLGA hydrogels as novel injectable platforms for neuroprotective combined therapies in the treatment of retinal degenerative diseases // Pharmaceutics. 2021. V. 13. № 2. P. 234. https://doi.org/10.3390/pharmaceutics13020234
Wei P-S., Chen Y.J., Lin S.Y. et al. In situ subcutaneously injectable thermosensitive PEG-PLGA diblock and PLGA-PEG-PLGA triblock copolymer composite as sustained delivery of bispecific anti-CD3 scFv T‑cell/anti-EGFR Fab Engager (BiTEE) // Biomaterials. 2021. V. 278. P. P. 121166. https://doi.org/10.1016/j.biomaterials.2021.121166
Cespi M., Bonacucina G., Tiboni M. et al. Insights in the rheological properties of PLGA-PEG-PLGA aqueous dispersions: Structural properties and temperature-dependent behavior // Polymer. 2021. V. 213. P. 123216. https://doi.org/10.1016/j.polymer.2020.123216
Kamali H., Khodaverdi E., Hadizadeh F. et al. Comparison of in-situ forming composite using PLGA-PEG-PLGA with in-situ forming implant using PLGA: In-vitro, ex-vivo, and in-vivo evaluation of naltrexone release // Journal of Drug Delivery Science and Technology. 2019. V. 50. P. 188–200. https://doi.org/10.1016/j.jddst.2019.01.011
Chen X., Wang H. et al. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis // Biomaterials. 2023. V. 298. P. 122139. https://doi.org/10.1016/j.biomaterials.2023.122139
Steinman N.Y, Haim-Zada M. et al. Effect of PLGA block molecular weight on gelling temperature of PL-GA-PEG-PLGA thermoresponsive copolymers // Journal of Polymer Science Part A: Polymer Chemistry. 2019. V. 57. № 1. P. 35–39. https://doi.org/10.1002/pola.29275
Cao D., Guo W., Cai C. et al. Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis // Advanced Functional Materials. 2022. V. 32. № 40. P. 2206084. https://doi.org/10.1002/adfm.202206084
Vojtova L., Michlovska L., Valova K. et al. The effect of the thermosensitive biodegradable PLGA–PEG–PLGA copolymer on the rheological, structural and mechanical properties of thixotropic self-hardening tricalcium phosphate cement // International Journal of Molecular Science. 2019. V. 20. № 2. P. 391. https://doi.org/10.3390/ijms20020391
Yuan B., Zhang Y., Wang Q. et al. Thermosensitive vancomycin@PLGA-PEG-PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis // International Journal of Pharmaceutics. 2022. V. 627. P. 122225. https://doi.org/10.1016/j.ijpharm.2022.122225
Gao Y., Ji H., Peng L. et al. Development of PLGA-PEG-PLGA hydrogel delivery system for enhanced immunoreaction and efficacy of newcastle disease virus DNA vaccine // Molecules. 2020. V. 25. № 11. P. 2505. https://doi.org/10.3390/molecules25112505
Maeda T., Tanimoto K., Hotta A. Thermogelling nanocomposite hydrogel: PLGA molecular weight in P-LGA-b-PEG-b-PLGA affecting the thermogelling behavior // Macromolecular Chemistry and Physics. 2022. V. 223. № 1. P. 2100316. https://doi.org/10.1002/macp.202100316
Khorshid N.K., Zhu K., Knudsen K.D. et al. Novel structural changes during temperature-induced self-assembling and gelation of PLGA-PEG-PLGA triblock copolymer in aqueous solutions // Macromolecular Bioscience. 2016. V. 16. № 12. P. 1838–1852. https://doi.org/10.1002/mabi.201600277
Rahmani F., Atabaki R., Behrouzi S. et al. The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery // International Journal of Pharmaceutics. 2023. V. 631. P. 122484. https://doi.org/10.1016/j.ijpharm.2022.122484
Jin X., Fu Q., Gu Z. et al. Injectable corilagin/low molecular weight chitosan/PLGA-PEG-PLGA thermosensitive hydrogels for localized cancer therapy and promoting drug infiltration by modulation of tumor microenvironment // International Journal of Pharmaceutics. 2020. V. 589. P. 119772. https://doi.org/10.1016/j.ijpharm.2020.119772
Zhang L., Shen W., Luan J. et al. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel // Acta Biomaterialia. 2015. V. 23. P. 271–281. https://doi.org/10.1016/j.actbio.2015.05.005
Osorno L.L., Maldonado D.E., Whitener R.J. et al. Amphiphilic PLGA-PEG-PLGA triblock copolymer nanogels varying in gelation temperature and modulus for the extended and controlled release of hyaluronic acid // Journal of Applied Polymer Science. 2019. V. 137 № 25. P. 48678. https://doi.org/10.1002/app.48678
Chen X., Chen J., Li B. et al. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment // Journal of Colloid and Interface Science. 2017. V. 490. P. 542–552. https://doi.org/10.1016/j.jcis.2016.11.089
Cao D., Zhang X., Akabar M. et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer // Artificial Cells, Nanomedicine, and Biotechnology. 2019. V. 47. № 1. P. 181–191. https://doi.org/10.1080/21691401.2018.1548470
Wang P., Zhuo X., Chu W., Tang X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity // International Journal of Pharmaceutics. 2017. V. 528. № 1–2. P. 62–75. https://doi.org/10.1016/j.ijpharm.2017.05.069
Yan Q., Xiao L.Q., Tan L. et al. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-P-LGA hydrogel for bone tissue regeneration: In vitro and in vivo characteristics // Journal of Biomedical Materials Research Part A. 2015. V. 103. № 11. P. 3580–3589. https://doi.org/10.1002/jbm.a.35499
Rong X., Ji Y., Zhu X. et al. Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA-PEG-P-LGA hydrogel on diabetic retinopathy in rats // International Journal of Nanomedicine. 2019. V. 14. P. 45–55. https://doi.org/10.2147/IJN.S184574
Дополнительные материалы отсутствуют.
Инструменты
Коллоидный журнал