Мембраны и мембранные технологии, 2023, T. 13, № 6, стр. 452-463

Трифторэтилакрилат-замещенный полиметилсилоксан: перспективный мембранный материал для разделения АБЭ-ферментационной смеси

Е. А. Грушевенко a*, Т. Н. Рохманка a, А. В. Балынин a, Г. С. Голубев a, И. Л. Борисов a

a Институт нефтехимического синтеза им. А.В. Топчиева РАН
Москва, Ленинский пр., 29, Россия

* E-mail: evgrushevenko@ips.ac.ru

Поступила в редакцию 25.05.2023
После доработки 14.07.2023
Принята к публикации 07.08.2023

Аннотация

Данная работа направлена на получение мембранного материала, устойчивого к образованию осадка на поверхности при контакте с АБЭ-ферментационной смесью и обладающего хорошей разделительной способностью при первапорационном выделении н-бутанола из водно-спиртовой смеси. В этой связи, в данной работе впервые предложено создание первапорационных мембран на основе полиметилтрифторэтилакрилатсилоксана (F3-Acr), а также сополимера полидецилметилсилоксана и полиметилтрифторэтилакрилатсилоксана (C10-F3-Acr). В сравнении с полидецилметилсилоксаном (С10) были изучены структура и сорбционные свойства разработанных мембранных материалов по н-бутанолу, этанолу и ацетону. Стоит отметить, что наибольшая сорбция н-бутанола характерна для C10-F3-Acr (0.46 г/г). Изменение свойств поверхности оценивали по величине угла смачивания и элементному составу поверхности до и после экспозиции в течение 1 мес. в ферментационной среде. Транспортные и разделительные свойства синтезированных мембранных материалов были изучены в режиме вакуумной первапорации при разделении модельной АБЭ-ферментационной смеси. Показано, что введение фторсодержащего заместителя в боковую цепь полисилоксана позволило увеличить гидрофильность полимера: поток воды для F3-Acr составил 0.7 × 10–6 кг м м–2 ч–1, что почти в 3 раза выше, чем для С10. Стоит отметить положительный эффект комбинации C10 и F3-Acr групп в полисилоксане. Так, при увеличении величины общего потока на 60% в сравнении с мембраной С10, значения фактора разделения по н-бутанолу, ацетону и этанолу составили 40.5, 32.7 и 4.3 и возросли в сравнении с мембраной С10 на 6, 15 и 12% соответственно. Для мембраны C10-F3-Acr индекс первапорационного разделения по н-бутанолу, ацетону и этанолу составил 136, 109 и 11. Следовательно, данная мембрана вдвое эффективнее, что С10. С учетом отсутствия детектируемого загрязнения поверхности мембранного материала продуктами ферментации можно отметить высокий потенциал мембраны C10-F3-Acr для задачи выделения спиртов из АБЭ-ферментационной смеси.

Ключевые слова: полидецилметилсилоксан, полиметилтрифторакрилатсилоксан, АБЭ-ферментационная смесь, первапорация, отложения на мембранах

Список литературы

  1. Zheng P., Li C., Wang N., Li J., An Q. // Chinese J. Chemical Engineering. 2019. V. 27. P. 1296–1306.

  2. Oh Y.K., Hwang K.R., Kim C., Kim J.R., Lee J.S. // Bioresource Technology. 2018. V. 257. P. 320–333.

  3. Dürre P. // J.: Healthcare Nutrition Technology. 2007. V. 2. P. 1525–1534.

  4. García V., Päkkilä J., Ojamo H., Muurinen E., Keiski R.L. // Renew. Sust. Energ. Rev. 2011. V. 15. P. 964–980.

  5. Green E.M. // Curr. Opin. Biotechnol. 2011. V. 22. P. 337–343

  6. Peralta-Yahya P.P., Keasling J.D. // Biotechnology J. 2010. V. 5. P. 147–162.

  7. Liu G., Wei W., Wu H., Dong X., Jiang M., Jin W. // J. Membrane Science. 2011. V. 373. P. 121–129.

  8. Kujawska A., Kujawski J., Bryjak M., Kujawski W. // Renewable and Sustainable Energy Reviews. 2015. V. 48. P. 648–661.

  9. Pulyalina A., Polotskaya G., Goikhman M., Podeshvo I., Chernitsa B., Kocherbitov V., Toikka A. // Scientific Reports. 2017. V. 7. P. 1–12.

  10. Van der Bruggen B., Luis P. // Curr. Op. in Chem Eng. 2014. V. 4. P. 47–53.

  11. Atlaskin A.A., Petukhov A.N., Yanbikov N.R., Salnikova M.E., Sergeeva M.S., Vorotyntsev V.M., Vorotyntsev I.V. // Chemical and Process Engineering. 2018. P. 323–333.

  12. Otvagina K.V., Penkova A.V., Dmitrenko M.E., Kuzminova A.I., Sazanova T.S., Vorotyntsev A.V., Vorotyntsev I.V. // Membranes. 2019. V. 9. P. 38.

  13. Liu G., Wei W., Jin W. // ACS Sustainable Chemistry & Engineering. 2014. V. 2. P. 546–560.

  14. Rozicka A., Niemistö J., Keiski R.L., Kujawski W. // J. Membrane Science. 2014. V. 453. P. 108–118.

  15. Rom A., Friedl A. // Separation and Purification Technology. 2016. V. 170. P. 40–48.

  16. Kujawska A., Knozowska K., Kujawa J., Li G., Kujawski W. // Separation and Purification Technology. 2020. V. 234. P. 116092.

  17. Борисов И.Л., Ушаков Н.В., Волков В.В., Финкельштейн Е.Ш. // Нефтехимия. 2016. Т. 56. № 6. С. 578–583.

  18. Bennett M., Brisdon B.J., England R., Field R.W. // J. Membrane Science. 1997. V. 137. № 1–2. P. 63–88.

  19. Грушевенко Е.А., Подтынников И.А., Борисов И.Л. // Журн. прикладной химии. 2019. Т. 92. № 11. С. 1488–1496.

  20. Borisov I., Podtynnikov I., Grushevenko E., Scharova O., Anokhina T., Makaev S., Volkov A., Volkov V. // Polymers. 2020. V. 12. P. 1213.

  21. Penkova A.V., Acquah S.F., Sokolova M.P., Dmitrenko M.E., Toikka A.M. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C60 (OH) 12 // J. Membr. Sci. 2015. V. 491. P. 22–27.

  22. Polotskaya G.A., Pulyalina A.Y., Rostovtseva V.A., Toikka A.M., Saprykina N.N., Vinogradova L.V. // Polymer International. 2016. V. 65. P. 407–414.

  23. Jia Z., Wu G. Metal-organic frameworks based mixed matrix membranes for pervaporation, Microporous and Mesoporous Materials. 2016. V. 235. P. 151–159.

  24. Liu G., Chernikova V., Liu Y., Zhang K., Belmabkhout Y., Shekhah O., Zhang C., Yi S., Eddaoudi M., Koros W.J. // Nature Materials. 2018. V. 17. P. 283–289.

  25. Апель П.Ю., Велизаров С., Волков А.В., Елисеева Т.В., Никоненко В.В., Паршина А.В., Письменская Н.Д., Попов К.И., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 81–106.

  26. Volkov V., Borisov I., Golubev G., Vasilevsky V., Matveev D., Bondarenko G., Volkov A. // J. Chemical Technology & Biotechnology. 2020. V. 9. № 1. P. 40–51.

  27. Fadeev A.G., Meagher M.M., Kelley S.S., Volkov V.V. // J. Membrane Science. 2000. V. 173. P. 133–144.

  28. Qureshi N., Blaschek H.P. // Biotechnology Progress. 1999. V. 15. P. 594–602.

  29. Rokhmanka T.N., Grushevenko E.A., Arapova O.V., Bondarenko G.N., Golubev G.S., Borisov I.L., Volkov A.V. // Applied Sciences. 2023. V. 13. № 6. P. 3827.

  30. Knozowska K., Kujawska A., Kujawa J., Kujawski W., Bryjak M., Chrzanowska E., Kujawski J.K. // Separation and Purification Technology. 2017. V. 188. P. 512–522.

  31. Yakovlev A.V., Shalygin M.G., Matson S.M., Khotimskiy V.S., Teplyakov V.V. // J. Membr. Sci. 2013. V. 434. P. 99–105.

  32. Шалыгин М.Г., Козлова А.А., Тепляков В.В. // Мембраны и мембранные технологии. 2022. Т. 22. № 4. С. 294–304.

  33. Chu Z., Seeger S. // Chem. Soc. Rev. 2014. V. 43. P. 2784–2798.

  34. Tuteja A., Choi W., Ma M., Mabry J.M., Mazzella S.A., Rutledge G.C., McKinley G.H., Cohen R.E. // Science. 2007. V. 308. P. 1618–1622.

  35. Lu X., Peng Y., Ge L., Lin R., Zhu Z., Liu S. // J. Membr. Sci. 2016. V. 505. P. 61–69.

  36. Zheng R., Chen Y., Wang J., Song J., Li X.-M., He T. // J. Membr. Sci. 2018. V. 555. P. 197–205.

  37. Zhu H., Li X., Pan Y., Liu G., Wu H., Jiang M., Jin W. Fluorinated PDMS Membrane with Anti-biofouling Property for in-situ Biobutanol Recovery from Fermentation-Pervaporation Coupled Process // J. Membr. Sci. 2020. V. 609. P. 118225.

  38. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. // Materials Today Chemistry. 2021. V. 22. P. 100598.

  39. Darvishmanesh S., Degrève J., Van der Bruggen B. // Chem. Eng. Sci. 2009. V. 64. № 17. P. 3914.

  40. Юшкин А.А., Анохина Т.С., Баженов С.Д., Борисов И.Л., Budd P.M., Волков А.В. // Мембраны и мембранные технологии. 2018. Т. 8. № 6. С. 434–439.

  41. Kang N., Du Z., Li H., Zhang C. // J. Appl. Polym. Sci. 2011. V. 124. P. 4915–4919.

  42. Stern S.A., Shah V.M., Hardy B.J. // J. polymer science part B: Polymer physics. 1987. V. 25. № 6. P. 1263–1298.

Дополнительные материалы отсутствуют.