Мембраны и мембранные технологии, 2023, T. 13, № 6, стр. 464-474

Влияние подхода к определению газотранспортных характеристик мембранных материалов на результаты математического моделирования процесса газоразделения

А. А. Атласкин a*, С. С. Крючков a, А. Н. Степакова a, И. С. Моисеенко a, Н. С. Цивковский a, К. А. Смородин a, А. Н. Петухов ab, М. Е. Атласкина a, И. В. Воротынцев a

a Российский химико-технологический университет им. Д.И. Менделеева
125047 Москва, Миусская пл., 9, Россия

b Нижегородский государственный университет им. Н.И. Лобачевского
603022 Нижний Новгород, пр. Гагарина, 23, Россия

* E-mail: atlaskin.a.a@muctr.ru

Поступила в редакцию 08.06.2023
После доработки 18.07.2023
Принята к публикации 07.08.2023

Аннотация

В работе было выполнено исследование зависимости выходных характеристик газоразделительного мембранного процесса, определенных в ходе симуляции, от газотранспортных характеристик мембраны, заданных в качестве параметров модели мембранного модуля на примере лабораторного образца, содержащего полые волокна из полифениленоксида. Результатом такого комплексного исследования, включающего теоретический и экспериментальный подходы было определено, что при использовании газотранспортных характеристик, полученных для чистых газов для моделирования процесса, ошибка, выраженная в достижимой концентрации целевого компонента в потоке продукта, составляет от 1.5 до 8.8% в сравнении с экспериментально полученными значениями для модуля той же геометрии и одинаковой площадью мембраны. Такое расхождение может привести как к постановке недостижимых целевых показателей при создании технологической линии, так и к неверной технико-экономической оценке процесса. Таким образом, при проектировании технологических линий с привлечением средств математического моделирования следует опираться на газотранспортные характеристики материала и/или изделия, полученные для компонентов реальных или имитирующих реальные газовые смеси.

Ключевые слова: мембранное газоразделение, полифениленоксид, математическое моделирование, азот, кислород, диоксид углерода

Список литературы

  1. Alsawaftah N., Abuwatfa W., Darwish N., Husseini G. // Water. 2021. V. 13. I. 9. P. 1327.

  2. Chaturvedi P., Moehring N.K., Cheng P., Vlassiouk I., Boutilier M.S.H., Kidambi P.R. // J. Materials Chemistry A. 2022. V. 10. I. 37. P. 19797–19810.

  3. Trubyanov M.M., Drozdov P.N., Atlaskin A.A., Battalov S.V., Puzanov E.S., Vorotyntsev A.V., Petukhov A.N., Vorotyntsev V.M., Vorotyntsev I.V. // J. Membrane Science. 2017. V. 530. P. 53–64.

  4. Trubyanov M.M., Kirillov S.Y., Vorotyntsev A.V., Sazanova T.S., Atlaskin A.A., Petukhov A.N., Kirillov Y.P., Vorotyntsev I.V. // J. Membrane Science. 2019. V. 587. № 117173.

  5. Ahmad F., Lau K.K., Shariff A.M., Murshid G. // Computers & Chemical Engineering. 2012. V. 36. I. 1. P. 119–128.

  6. Chu Y., He X. // Membranes. 2018. V. 8. I. 4. P. 118.

  7. Atlaskin A.A., Trubyanov M.M., Yanbikov N.R., Bukovsky M.V., Drozdov P.N., Vorotyntsev V.M., Vorotyntsev I.V. // Petroleum Chemistry. 2018. V. 58. I. 6.

  8. Merkel T.C., Lin H., Wei X., Baker R. // J. Membrane Science. 2010. V. 359. I. 1–2. P. 126–139.

  9. Bounaceur R., Berger E., Pfister M., Ramirez Santos A.A., Favre E. // J. Membrane Science. 2017. V. 523. P. 77–91.

  10. Zhao L., Riensche E., Menzer R., Blum L., Stolten D. // J. Membrane Science. 2008. V. 325. I. 1. P. 284–294.

  11. Brunetti A., Zito P.F., Borisov I., Grushevenko E., Volkov V., Volkov A., Barbieri G. // Fuel Processing Technology. 2020. V. 210. № 106550.

  12. Atlaskin A.A., Petukhov A.N., Stepakova A.N., Tsivkovsky N.S., Kryuchkov S.S., Smorodin K.A., Moiseenko I.S., Atlaskina M.E., Suvorov S.S., Stepanova E.A., Vorotyntsev I.V. // Membranes. 2023. V. 13. I. 3. P. 270.

  13. Yang X., Duke M., Zhang J., Li J. De // Separation and Purification Technology. 2019. V. 224. P. 121–131.

  14. Maarefian M., Bandehali S., Azami S., Sanaeepur H., Moghadassi A. // International J. Energy Research. 2019. V. 43. I. 14. P. 8217–8229.

  15. Trubyanov M.M., Mochalov G.M., Suvorov S.S., Puzanov E.S., Petukhov A.N., Vorotyntsev I.V., Vorotyntsev V.M. // J. Chromatography A. 2018. V. 1560. P. 71–77.

  16. Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A.V., Vorotyntsev A.V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering J. 2020. P. 127726.

  17. Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. // Reactive and Functional Polymers. 2019. V. 134. P. 156–165.

  18. Zhmakin V., Shalygin M., Khotimskiy V., Matson S., Teplyakov V. // Separation and Purification Technology. 2019. V. 212. P. 877–886.

  19. Ovcharova A., Vasilevsky V., Borisov I., Bazhenov S., Volkov A., Bildyukevich A., Volkov V. // Separation and Purification Technology. 2017. V. 183. P. 162–172.

  20. Anselmi H., Mirgaux O., Bounaceur R., Patisson F. // Chemical Engineering & Technology. 2019. V. 42. I. 4. P. 797–804.

  21. Lin H., Freeman B.D. // J. Membrane Science. 2004. V. 239. I. 1. P. 105–117.

  22. Kim J.H., Lee Y.M. // J. Membrane Science. 2001. V. 193. I. 2. P. 209–225.

  23. Deng L., Hägg M.B. // International J. Greenhouse Gas Control. 2010. V. 4. I. 4. P. 638–646.

  24. Deng L., Kim T.J., Hägg M.B. // J. Membrane Science. 2009. V. 340. I. 1–2. P. 154–163.

  25. Houde A.Y., Krishnakumar B., Charati S.G., Stern S.A., Wiley J. // J. Applied Polymer Science. 1996. V. 62. I. 13. P. 2181–2192.

  26. Daham Wiheeb A., Mun A., Karim E.A., Mohammed T.E., Othman R. // Diyala J. Engineering Sciences. 2015. P. 846–854.

  27. Niknejad S.M.S., Savoji H., Pourafshari Chenar M., Soltanieh M. // International J. Environmental Science and Technology. 2017. V. 14. I. 2. P. 375–384.

  28. Orme C.J., Stewart F.F. // J. Membrane Science. 2005. V. 253. I. 1–2. P. 243–249.

  29. Makhloufi C., Roizard D., Favre E. // J. Membrane Science. 2013. V. 441. P. 63–72.

  30. Vorotyntsev I.V., Shablykin D.N., Drozdov P.N., Trubyanov M.M., Petukhov A.N., Battalov S.V. // Petroleum Chemistry. 2017. V. 57. I. 2. P. 172–181.

  31. Modigell M., Schumacher M., Teplyakov V.V., Zenkevich V.B. // Desalination. 2008. V. 224. I. 1–3. P. 186–190.

  32. Platé N.A., Bokarev A.K., Kaliuzhnyi N.E., Litvinova E.G., Khotimskii V.S., Volkov V.V., Yampol’skii Yu.P. // J. Membrane Science. 1991. V. 60. I. 1. P. 13–24.

  33. Vorotyntsev I.V., Drozdov P.N., Karyakin N.V. // Inorganic Materials. 2006. V. 42. I. 3. P. 231–235.

  34. Makhloufi C., Belaissaoui B., Roizard D., Favre E. // Procedia Engineering. 2012. V. 44. P. 143–146.

  35. Phillip W.A., Martono E., Chen L., Hillmyer M.A., Cussler E.L. // J. Membrane Science. 2009. V. 337. I. 1. P. 39–46.

  36. Barrer R.M., Barrie J.A., Slater J. // J. Polymer Science. 1958. V. 27. I. 115. P. 177–197.

  37. GitHub – CCSI-Toolset/membrane_model: Membrane Separation Model: Updated hollow fiber membrane model and system example for carbon capture., (n.d.). https://github.com/CCSI-Toolset/membrane_model.

Дополнительные материалы отсутствуют.